首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   1篇
地质学   9篇
海洋学   2篇
天文学   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2006年   1篇
  2002年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
The evolutionary and biogeographic history of the contemporary Antarctic terrestrial and marine biotas reveals many components of ancient origin. For large elements of the terrestrial biota, long-term isolation over timescales from hundreds of thousands to tens of millions of years, and thus persistence through multiple glacial cycles, now appears to be the norm rather than the exception. For the marine biota there are some parallels with benthic communities also including ancient components, together with an incidence of species-level endemism indicating long-term isolation on the Antarctic continental shelf. Although it has long been known that a few ice-free terrestrial locations have existed in Antarctica for up to 10–12 million years, particularly in the Dry Valleys of Victoria Land along with certain nunataks and higher regions of large mountain ranges, these do not provide potential refugia for the majority of terrestrial biota, which occur mainly in coastal and/or low-lying locations and exhibit considerable biogeographic regionalisation within the continent. Current glacial models and reconstructions do not have the spatial resolution to detect unequivocally either the number or geographical distribution of these glacial refugia, or areas of the continental shelf that have remained periodically free from ice scouring, but do provide limits for their maximum spatial extent. Recent work on the evolution of the terrestrial biota indicates that refugia were much more widespread than has been recognised and it is now clear that terrestrial biology provides novel constraints for reconstructing the past glacial history of Antarctica, and new marine biological investigations of the Antarctic shelf are starting to do likewise.  相似文献   
12.
Records of glaciomarine deposition recovered from the West Antarctic continental margin in the Amundsen Sea allow the reconstruction of the behaviour of the West Antarctic Ice Sheet (WAIS) in response to the natural climatic changes of the last 1.8 million years. Contents of gravel-sized and lithogenic components represent the input and redeposition of glaciogenic debris, whereas variations in the proportions of the calcareous sediment fraction reflect palaeoproductivity changes. All proxies, which are regarded as sensitive to a WAIS collapse, changed markedly during the global climatic cycles, but do not confirm a complete disintegration of the WAIS during the Pleistocene.  相似文献   
13.
The Upper Miocene (10.7–9.0 Ma) Battye Glacier Formation was deposited 250 km inland from the modern Amery Ice Shelf edge in Prydz Bay, East Antarctica. The composition of clay minerals distinguishes a Lower Member, which reflects regional erosion of Precambrian metamorphic basement, from an Upper Member, which records increased erosion of local Permian–Triassic Amery Group strata. The Upper Member was deposited in an ice-proximal environment akin to the modern fjords of East Greenland, with substantial diamict deposition resulting from melting iceberg discharge. The Lower Member was deposited in an ice-distal environment and included the accumulation of the fossil-bearing McLeod Beds. The McLeod Beds contain much siliceous biogenic sediment (≤ 15% opal), which is rare to absent in the predominantly hemipelagic mud of modern East Greenland fjords. The McLeod Beds also contain largely monospecific in situ Hiatella sp. mollusc assemblages suggestive of environmental stress, potentially caused by low salinity melt-water and a high input of terrigenous sediment, which excluded most other benthic taxa. Geochemical results from primary aragonite in Hiatella shells imply large freshwater input into the marine environment during mollusc growth, causing low δ18O, Na, Mg and high Fe values. The present study indicates that iceberg melt-water influence entering the marine environment was greater during the Late Miocene than today around Antarctica, and documents the paleoenvironment associated with a discrete period of ice margin retreat and marine incursion into the Lambert embayment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号