首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   10篇
  国内免费   6篇
测绘学   10篇
大气科学   63篇
地球物理   105篇
地质学   150篇
海洋学   52篇
天文学   32篇
综合类   1篇
自然地理   27篇
  2023年   5篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2019年   8篇
  2018年   9篇
  2017年   19篇
  2016年   27篇
  2015年   12篇
  2014年   26篇
  2013年   27篇
  2012年   21篇
  2011年   27篇
  2010年   22篇
  2009年   32篇
  2008年   34篇
  2007年   15篇
  2006年   19篇
  2005年   22篇
  2004年   19篇
  2003年   12篇
  2002年   9篇
  2001年   12篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1970年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
81.
The use of real-time landslide early warning systems is attracting the attention of the scientific community, since it allows to assess “where” and “when” a shallow rainfall-induced landslide might occur by coupling rainfall amounts, hydrological models and slope-stability analysis. The paper deals with the main results of a back analysis, which refers to the application of a physically based stability model [Shallow Landslides Instability Prediction (SLIP)] on regional scale. The analysis concerns the occurrence of some recent rainfall-induced shallow landslides in the municipal territory of Broni, in the area of Oltrepò Pavese (Northern Italy). The study area is a hilly region 2.4 km2 wide, where more than 40 % of the territory has slopes steeper than 15° and altitudes are between 90 and 250 m a.s.l. As regards the geologic setting, clayey-silty shallow colluvial deposits, with a maximum thickness of about 3 m, overlap a bedrock made of clayey shales, calcareous flysch and marls. The SLIP model is based on the limit equilibrium method applied to an infinite slope and on the Mohr–Coulomb strength criterion for the soil. By assuming that the main hydro-geotechnical process that leads to failure is the saturation of parts of the soil, the model allows to take into account the condition of partial saturation of the soil. The safety factor (F S ) of a slope is also function of previous rainfalls. After the implementation of the model at territory scale, the input data have been introduced through a geographic information systems platform. In the current paper we mainly intend to evaluate the performance of SLIP at catchment scale, by comparison to (1) observed landslide events and (2) another well-established physically based model (TRIGRS). Further, we want to assess the suitability of the model as early warning tool. The results produced by the model are analyzed both in terms of safety factor maps, corresponding to some particular rainfall events, and in terms of the time-varying percentage of unstable areas over a 2-year span period. The paper shows the comparison between observed landslide localizations and model predictions. A quantitative comparison between the SLIP model and TRIGRS is presented, only for the most important event that occurred during the analyzed period. Overall, the results of the stability analyses based on observed rainfalls show the capability of the SLIP model to predict, in real-time and on a wide area, the occurrence of the analyzed phenomena.  相似文献   
82.
The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global‐scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional‐scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional‐scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional‐scale models with global‐scale analyses would greatly enhance knowledge of the global groundwater depletion problem.  相似文献   
83.
Crustal deformation in front of an indenter is often affected by the indenter’s geometry, rheology, and motion path. In this context, the kinematics of the Jaufen- and Passeier faults have been studied by carrying out paleostress analysis in combination with crustal-scale analogue modelling to infer (1) their relationship during indentation of the Adriatic plate and (2) their sensitivity in terms of fault kinematics to the geometry and motion path of Adria. The field study reveals mylonites along the Jaufen fault, which formed under lower greenschist facies conditions and is associated with top-to-the-west/northwest shear with a northern block down component. In addition, a brittle reactivation of the Jaufen shear zone under NNW–SSE to NW–SE compressional and ENE–WSW tensional stress conditions was deduced from paleostress analysis. The inferred shortening direction is consistent with fission track ages portraying Neogene exhumation of the Meran-Mauls basement south of the fault. Along the Passeier fault, deformation was only brittle to semi-ductile and paleostress tensors record that the fault was subjected to E–W extension along its northern segment varying into NW–SE compression and sinistral transpression along its southern segment. In the performed analogue experiments, a rigid, triangular shaped indenter was pushed into a sand pile resulting in the formation of a Passeier-like fault sprouting from the indenter’s tip. These kinds of north-trending tip faults formed in all experiments with shortening directions towards the NW, N, or NE. Consequently, we argue that the formation of the Passeier fault strongly corresponds to the outline of the Adriatic indenter and was only little affected by the indenter’s motion path due to induced strain partitioning in front of the different indenter segments. The associated fault kinematics along the Passeier fault including both E–W extension and NNW to NW shortening, however, is most consistent with a northward advancing Adriatic indenter.  相似文献   
84.
Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.  相似文献   
85.
Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961–1990) and for two future emission scenarios (2071–2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions.  相似文献   
86.
The eruption of 1631 A.D. was the most violent and destructive event in the recent history of Vesuvius. More than fifty primary documents, written in either Italian or Latin, were critically examined, with preference given to the authors who eyewitnessed volcanic phenomena. The eruption started at 7 a.m. on December 16 with the formation of an eruptive column and was followed by block and lapilli fallout east and northeast of the volcano until 6 p.m. of the same day. At 10 a.m. on December 17, several nuées ardentes were observed to issue from the central crater, rapidly descending the flanks of the cone and devastating the villages at the foot of Vesuvius. In the night between the 16th and 17th and on the afternoon of the 17th, extensive lahars and floods, resulting from rainstorms, struck the radial valleys of the volcano as well as the plain north and northeast.Deposits of the eruption were identified in about 70 localities on top of an ubiquitous paleosol formed during a long preeruptive volcanic quiescence. The main tephra unit consists of a plinian fallout composed of moderately vesicular dark green lapilli, crystals and lithics. Isopachs of the fallout are elongated eastwards and permit a conservative volume calculation of 0.07 km3. The peak mass flux deduced from clast dispersal models is estimated in the range 3–6 × 107 kg/s, corresponding to a column height of 17–21 km. East of the volcano the plinian fallout is overlain by ash-rich low-grade ignimbrite, surges, phreatomagmatic ashes and mud flows. Ash flows occur in paleovalleys around the cone of Vesuvius but are lacking on the Somma side, suggesting that pyroclastic flows had not enough energy to overpass the caldera wall of Mt. Somma. Deposits are generally unconsolidated, massive with virtually no ground layer and occasionally bearing sparse rests of charred vegetation. Past interpretations of the products emitted on the morning of December 17 as lava flows are inconsistent with both field observations and historical data. Features of the final phreatomagmatic ashes are suggestive of alternating episodes of wet ash fallout and rainfalls. Lahars interfingered with primary ash fallout confirm episodes of massive remobilization of loose tephra by heavy rainfalls during the final stage of the eruption.Chemical analyses of scoria clasts suggest tapping of magma from a compositionally zoned reservoir. Leucite-bearing, tephritic-phonolite (SiO2 51.17%) erupted in the early plinian phase was in fact followed by darker and slightly more mafic magma richer in crystals (SiO2 49.36%). During the nuées ardentes phase the composition returned to that of the early phase of the eruption.The reconstruction of the 1631 eruptive scenario supplies new perspectives on the hazards related to plinian eruptions of Vesuvius.  相似文献   
87.
Mangrove Lagoon, located on the island of St. Croix, US Virgin Islands (USVI), is one of few actively bioluminescent lagoons in a location experiencing significant anthropogenic impacts. The bioluminescence is due to an abundance of the dinoflagellate Pyrodinium bahamense in the water column. We recovered surface sediments and sediment cores from Mangrove Lagoon to analyze the spatial distribution and temporal variability of P. bahamense cysts in this system. Surface sediment P. bahamense cyst concentrations ranged from 0 to 466 cysts g?1 dry sediment, with higher abundances associated with elevated surface water nutrient concentrations and a mixed terrestrial–marine organic matter source regime. In combination with available bioassay data, we hypothesize that phytoplankton utilize nutrients rapidly and subsequent decay of organic matter makes nutrients available for dinoflagellates at the sediment–water interface in the eastern and northern quadrants of the lagoon. However, the nutrients are rapidly exhausted during counterclockwise lagoon circulation resulting in the decline of primary productivity and dinoflagellate abundance in the western quadrants. Downcore profiles suggest that P. bahamense blooms have been occurring for decades, declining in recent years. No cysts were present in sediments predating dredging activities of the 1960s that created Mangrove Lagoon. Recent reductions in cyst abundance may be the result of limited primary productivity caused by restricted water exchange with Salt River Bay due to shallowing of a sill at the mouth of the lagoon. This research highlights the need for more comprehensive geochemical and fossil analyses to better understand long-term ecological variability and inform conservation efforts of these unique habitats.  相似文献   
88.
We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian Peninsula. Our scenario of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.  相似文献   
89.
This paper presents a method to reconstruct the gas distribution inside a vertical cross section of a gas plume by combining data from two or more scanning DOAS instruments using a tomographic algorithm. The method can be applied to gas plumes from any single, elevated point source, such as a volcano or industrial chimney. Such two-dimensional concentration distributions may prove to be useful for example in plume chemistry, dispersion and environmental impact studies. Here we show the case with one scanning DOAS instrument located on each side of the plume, which is the easiest and most economic setup as well as the most useful in routine monitoring of e.g. volcanic gas emissions. The paper investigates the conditions under which tomographic reconstructions can be performed and discusses limitations of this setup. The proposed method has been studied theoretically by numerical simulations and has been experimentally tested during two field campaigns, with measurements of SO2 emissions from a volcano and a power plant. The simulations show that, under good measurement conditions, the algorithm presented performs well, which is further confirmed by the experimental results.  相似文献   
90.
The Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory is composed of a set of fourteen double sideband mixers. We discuss the general problem of the sideband ratio (SBR) determination and the impact of an imbalanced sideband ratio on the line calibration in double sideband heterodyne receivers. The HIFI SBR is determined from a combination of data taken during pre-launch gas cell tests and in-flight. The results and some of the calibration artefacts discovered in the gas cell test data are presented here along with some examples of how these effects appear in science data taken in orbit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号