全文获取类型
收费全文 | 291篇 |
免费 | 7篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 8篇 |
大气科学 | 20篇 |
地球物理 | 77篇 |
地质学 | 93篇 |
海洋学 | 32篇 |
天文学 | 32篇 |
自然地理 | 38篇 |
出版年
2024年 | 4篇 |
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 3篇 |
2020年 | 7篇 |
2019年 | 9篇 |
2018年 | 7篇 |
2017年 | 5篇 |
2016年 | 13篇 |
2015年 | 4篇 |
2014年 | 13篇 |
2013年 | 21篇 |
2012年 | 20篇 |
2011年 | 32篇 |
2010年 | 27篇 |
2009年 | 24篇 |
2008年 | 8篇 |
2007年 | 13篇 |
2006年 | 9篇 |
2005年 | 14篇 |
2004年 | 8篇 |
2003年 | 7篇 |
2002年 | 9篇 |
2001年 | 7篇 |
2000年 | 5篇 |
1999年 | 6篇 |
1998年 | 4篇 |
1996年 | 1篇 |
1994年 | 5篇 |
1989年 | 4篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1985年 | 1篇 |
1979年 | 1篇 |
1973年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有300条查询结果,搜索用时 62 毫秒
101.
Jacq Kévin Ployon Estelle Rapuc William Blanchet Claire Pignol Cécile Coquin Didier Fanget Bernard 《Journal of Paleolimnology》2021,66(3):249-260
Journal of Paleolimnology - Images of sediment cores are often acquired to preserve primary color information, before such profiles are altered by subsequent sampling and destructive analyses. In... 相似文献
102.
Geological surveys of Australia’s marine territory have revealed significant potential for development of a marine resource industry. As onshore mineral deposits become harder to find, less accessible to their market and more challenging to extract, seafloor exploration and mining becomes an economically viable option. However, evidence from industry and environmental literature suggests that social acceptance will be important in determining the future of this industry in Australia. This paper reports on findings from research investigating the social viability of seafloor mining in Australia. A combination of interviews and focus groups were used to explore industry and community reactions to the possible development of seafloor mining in Australia. Although stakeholders’ reactions were variable, the majority of the participants were reluctant to see development of seafloor mining in Australia, primarily because of concerns about the industry’s potential environmental impact. All stakeholders sought further information about the benefits and costs associated with the industry suggesting that they did not yet have a fixed attitude towards the industry. Stakeholders favoured a precautionary approach towards the industry, supported by rigorous scientific analysis of the potential environmental impacts, transparent and socially responsive management processes and meaningful engagement with stakeholders. 相似文献
103.
104.
105.
Inputs of dissolved and particulate 226Ra to lakes and implications for 210Pb dating recent sediments 总被引:2,自引:6,他引:2
Gamma spectroscopy was used to measure radioisotope (210Pb, 226Ra, 137Cs) activities in sediment cores from 20 lakes and a wetland in Florida, USA. Nine profiles display relatively low (<5 dpm g–1) and constant 226Ra activities, whereas 12 show high (>5 dpm g–1) and variable 226Ra activities. In the latter group, most display up-core increases in activity. Upper sediments from two lakes (Round and Rowell) possess very high (>20 dpm g–1) 226Ra activities that exceed total 210Pb activities, clearly illustrating disequlibrium between 226Ra and supported 210Pb. Supported 210Pb activity is generally thought to come from in situ, 226Ra-containing detrital mineral particles, and is typically assumed to be in secular equilibrium with 226Ra activity. Since 1966, Round Lake has been augmented hydrologically with 226Ra-rich (6.2 dpm L–1) groundwater pumped from the local deep aquifer. Adsorption of dissolved 226Ra to recent Round Lake sediments probably accounts for the high measured 226Ra activities and the pronounced disequilibrium between 226Ra and supported 210Pb in topmost deposits. We suspect that many Florida waterbodies receive some 226Ra-rich runoff and seepage from groundwater pumped for irrigation, residential use, industrial applications, and mining. This may account for up-core increases in 226Ra activity measured in sediment cores from some Florida lakes. Significant groundwater pumping began within the last century, and there has been insufficient time for supported 210Pb to come into equilibrium with adsorbed 226Ra in uppermost deposits. Input of 226Ra-rich groundwater to lakes may occur in any geographic region where local bedrock contains 238U and its daughters. When dissolved 226Ra adsorbs to recent sediments, it complicates accurate estimation of supported 210Pb activity, and confounds calculation of unsupported 210Pb activity that is used in dating models. 相似文献
106.
Eric H. Oelkers Sergey V. Golubev Claire Chairat Oleg S. Pokrovsky Jacques Schott 《Geochimica et cosmochimica acta》2009,73(16):4617-6554
The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ∼8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ∼1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ∼3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ∼4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional ‘internal’ adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pHIEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition. 相似文献
107.
Evolution of mountain landscapes is controlled by dynamic interactions between erosional processes that vary in efficiency over altitudinal domains. Evaluation of spatial and temporal variations of individual erosion processes can augment our understanding of factors controlling relief and geomorphic development of alpine settings. This study tests the application of detrital apatite (U‐Th)/He thermochronology (AHe) to evaluate variable erosion in small, geologically complex catchments. Detrital grains from glacial and fluvial sediment in a single basin were dated and compared with a bedrock derived age‐elevation relationship to estimate spatial variation in erosion over different climate conditions in the Teton Range, Wyoming. Controls and pitfalls related to apatite quality and yield were fully evaluated to assess this technique. Probability density functions comparing detrital age distributions identify variations in erosional patterns between glacial and fluvial systems and provide insight into how glacial, fluvial, and hillslope processes interact. Similar age distributions representing erosion patterns during glacial and interglacial times suggest the basin may be approaching steady‐state. This also implies that glaciers are limited and no longer act as buzzsaws or produce relief. However, subtle differences in erosional efficiency do exist. The high frequency of apatite cooling ages from high altitudes represents either rapid denudation of peaks and ridges by mass wasting or an artifact of sample quality. A gap in detrital ages near the mean age, or mid‐altitude, indicates the fluvial system is presently transport limited by overwhelming talus deposits. This study confirms that sediment sources can be traced in small basins with detrital AHe dating. It also demonstrates that careful consideration of mineral yield and quality is required, and uniform erosion assumptions needed to extract basin thermal history from detrital ages are not always valid. 相似文献
108.
Claire?E.?Bucholz "mailto:cbucholz@mit.edu " title= "cbucholz@mit.edu " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author Oliver?Jagoutz Max?W.?Schmidt Oyungerel?Sambuu 《Contributions to Mineralogy and Petrology》2014,168(5):1072
Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt. 相似文献
109.
Kalin Kouzmanov Robert Moritz Albrecht von Quadt Massimo Chiaradia Irena Peytcheva Denis Fontignie Claire Ramboz Kamen Bogdanov 《Mineralium Deposita》2009,44(6):611-646
Vlaykov Vruh–Elshitsa represents the best example of paired porphyry Cu and epithermal Cu–Au deposits within the Late Cretaceous
Apuseni–Banat–Timok–Srednogorie magmatic and metallogenic belt of Eastern Europe. The two deposits are part of the NW trending
Panagyurishte magmato-tectonic corridor of central Bulgaria. The deposits were formed along the SW flank of the Elshitsa volcano-intrusive
complex and are spatially associated with N110-120-trending hypabyssal and subvolcanic bodies of granodioritic composition.
At Elshitsa, more than ten lenticular to columnar massive ore bodies are discordant with respect to the host rock and are
structurally controlled. A particular feature of the mineralization is the overprinting of an early stage high-sulfidation
mineral assemblage (pyrite ± enargite ± covellite ± goldfieldite) by an intermediate-sulfidation paragenesis with a characteristic
Cu–Bi–Te–Pb–Zn signature forming the main economic parts of the ore bodies. The two stages of mineralization produced two
compositionally different types of ores—massive pyrite and copper–pyrite bodies. Vlaykov Vruh shares features with typical
porphyry Cu systems. Their common geological and structural setting, ore-forming processes, and paragenesis, as well as the
observed alteration and geochemical lateral and vertical zonation, allow us to interpret the Elshitsa and Vlaykov Vruh deposits
as the deep part of a high-sulfidation epithermal system and its spatially and genetically related porphyry Cu counterpart,
respectively. The magmatic–hydrothermal system at Vlaykov Vruh–Elshitsa produced much smaller deposits than similar complexes
in the northern part of the Panagyurishte district (Chelopech, Elatsite, Assarel). Magma chemistry and isotopic signature
are some of the main differences between the northern and southern parts of the district. Major and trace element geochemistry
of the Elshitsa magmatic complex are indicative for the medium- to high-K calc-alkaline character of the magmas. 87Sr/86Sr(i) ratios of igneous rocks in the range of 0.70464 to 0.70612 and 143Nd/144Nd(i) ratios in the range of 0.51241 to 0.51255 indicate mixed crustal–mantle components of the magmas dominated by mantellic signatures.
The epsilon Hf composition of magmatic zircons (+6.2 to +9.6) also suggests mixed mantellic–crustal sources of the magmas.
However, Pb isotopic signatures of whole rocks (206Pb/204Pb = 18.13–18.64, 207Pb/204Pb = 15.58–15.64, and 208Pb/204Pb = 37.69–38.56) along with common inheritance component detected in magmatic zircons also imply assimilation processes of
pre-Variscan and Variscan basement at various scales. U–Pb zircon and rutile dating allowed determination of the timing of
porphyry ore formation at Vlaykov Vruh (85.6 ± 0.9 Ma), which immediately followed the crystallization of the subvolcanic
dacitic bodies at Elshitsa (86.11 ± 0.23 Ma) and the Elshitsa granite (86.62 ± 0.02 Ma). Strontium isotope analyses of hydrothermal
sulfates and carbonates (87Sr/86Sr = 0.70581–0.70729) suggest large-scale interaction between mineralizing fluids and basement lithologies at Elshitsa–Vlaykov
Vruh. Lead isotope compositions of hydrothermal sulfides (206Pb/204Pb = 18.432–18.534, 207Pb/204Pb = 15.608–15.647, and 208Pb/204Pb = 37.497–38.630) allow attribution of ore-formation in the porphyry and epithermal deposits in the Southern Panagyurishte
district to a single metallogenic event with a common source of metals. 相似文献
110.
Andreas PACK Ingo VOGEL Claire ROLLION‐BARD Béatrice LUAIS Herbert PALME 《Meteoritics & planetary science》2011,46(10):1470-1483
Abstract– We report Si concentrations in the metal phases of iron meteorites. Analyses were performed by secondary ion mass spectrometry using a CAMECA 1270 ion probe. The Si concentrations are low (0.09–0.46 μg g?1), with no apparent difference in concentration between magmatic and nonmagmatic iron meteorites. Coexisting kamacite and Ni‐rich metal phases have similar Si contents. Thermodynamic calculations show that Fe,Ni‐metal in equilibrium with silicate melts at temperatures where metal crystallizes should contain approximately 100 times more Si than found in iron meteorites in this work. The missing Si may either occur as tiny silicate inclusions in metal or it may have diffused as Si‐metal into surrounding silicates at low temperatures. In both cases, extensive low‐temperature diffusion of Si in metal is required. It is therefore concluded that low Si in iron meteorites is a result of subsolidus reactions during slow cooling. 相似文献