全文获取类型
收费全文 | 499篇 |
免费 | 7篇 |
国内免费 | 11篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 59篇 |
地球物理 | 159篇 |
地质学 | 183篇 |
海洋学 | 70篇 |
天文学 | 16篇 |
综合类 | 5篇 |
自然地理 | 22篇 |
出版年
2022年 | 5篇 |
2021年 | 14篇 |
2020年 | 7篇 |
2019年 | 7篇 |
2018年 | 14篇 |
2017年 | 18篇 |
2016年 | 24篇 |
2015年 | 15篇 |
2014年 | 28篇 |
2013年 | 40篇 |
2012年 | 25篇 |
2011年 | 29篇 |
2010年 | 30篇 |
2009年 | 30篇 |
2008年 | 33篇 |
2007年 | 19篇 |
2006年 | 14篇 |
2005年 | 15篇 |
2004年 | 14篇 |
2003年 | 22篇 |
2002年 | 14篇 |
2001年 | 10篇 |
2000年 | 9篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 6篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1984年 | 2篇 |
1983年 | 6篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 9篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 3篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1974年 | 5篇 |
1973年 | 4篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有517条查询结果,搜索用时 15 毫秒
101.
Hak-Sung Kim Yong-Seung Chung Joon-Tae Kim 《Asia-Pacific Journal of Atmospheric Sciences》2014,50(2):191-200
Long-term variations and trends of atmospheric aerosols in the East Asian region were analyzed by using aerosol optical depth (AOD or τ), and ångström exponent (AE or α) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2010. The increased emission of anthropogenic fine aerosols in east China resulted in the high AOD in this region during summer. The steady increasing emission of anthropogenic fine aerosols caused an increasing trend of AOD in east China, and the large-scale transport of sandstorms and smoke plume caused by forest fires affected intense inter-annual variations of AOD in the East Asian region. While in the central part of South Korea, located in the lee side of the East Asian continent, AE tended to rise to a level higher than in east China, the ground-based mass concentrations continued to decline. A noticeable decrease of PM10 mass concentration in spring and winter in central Korea is most likely attributable to decreases in sandstorms in the source region of East Asia. However, the ratio of PM2.5 mass concentration to PM10 increases overall with a high level in summer. Aerosol types were classified into dust, smoke plume, and sulphate by using satellite data over Cheongwon in central Korea. The columnar AOD, with different aerosol types, was compared with the ground-based mass concentrations at Cheongwon, and the relatively high level of the correlations presented between PM2.5 and AOD produced in sulphate. Growth and increases of fine hygroscopic aerosols generated as gas-to-particle conversion particularly in summer contribute to increases of columnar AOD in the East Asian region. 相似文献
102.
Core A9-EB2 from the eastern Bransfield Basin, Antarctic Peninsula, consists of pelagic (diatom ooze-clay couplets and bioturbated diatom ooze) and hemipelagic (bioturbated mud) sediments interbedded with turbidites (homogeneous mud and silt–clay couplets). The cyclic and laminated nature of these pelagic sediments represents alternation between the deposition of diatom-rich biogenic sediments and of terrigenous sediments. Sediment properties and geochemical data explain the contrasting lamination, with light layers being finer-grained and relatively rich in total organic carbon and biogenic silica content. Also, the high-resolution magnetic susceptibility (MS) variations highlight distinct features: high MS values coincide with clastic-rich sections and low MS values correspond to biogenic sections. The chronology developed for core A9-EB2 accounts for anomalous ages associated with turbidites and shows a linear sedimentation rate of approximately 87 cm/103 yr, which is supported by an accumulation rate of 80 cm/103 yr calculated from 210Pb activity. The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP). Other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear in the MS record, suggesting intrinsically unstable climatic conditions during the late Holocene in the Bransfield Basin of Antarctic Peninsula. 相似文献
103.
Much of the nonlinearity and uncertainty regarding the flood process is because hydrologic data required for estimation are often tremendously difficult to obtain. This study employed a back‐propagation network (BPN) as the main structure in flood forecasting to learn and to demonstrate the sophisticated nonlinear mapping relationship. However, a deterministic BPN model implies high uncertainty and poor consistency for verification work even when the learning performance is satisfactory for flood forecasting. Therefore, a novel procedure was proposed in this investigation which integrates linear transfer function (LTF) and self‐organizing map (SOM) to efficiently determine the intervals of weights and biases of a flood forecasting neural network to avoid the above problems. A SOM network with classification ability was applied to the solutions and parameters of the BPN model in the learning stage, to classify the network parameter rules and to obtain the winning parameters. The outcomes from the previous stage were then used as the ranges of the parameters in the recall stage. Finally, a case study was carried out in Wu‐Shi basin to demonstrate the effectiveness of the proposal. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
104.
Assessment on variability of extreme climate events for the Upper Thames River basin in Canada 总被引:1,自引:0,他引:1
Climate change may affect magnitude and frequency of regional extreme events with possibility of serious impacts on the existing infrastructure systems. This study investigates how the current spatial and temporal variations of extreme events are affected by climate change in the Upper Thames River basin, Ontario, Canada. A weather generator model is implemented to obtain daily time series of three climate variables for two future climate scenarios. The daily time series are disaggregated into hourly to capture characteristics of intense and rapidly changing storms. The maximum annual precipitation events for five short durations, 6‐, 12‐, 24‐, 48‐, and 72‐h durations, at each station are extracted from the generated hourly data. The frequency and seasonality analyses are conducted to investigate the temporal and spatial variability of extreme precipitation events corresponding to each duration. In addition, this study investigates the impacts of increase in temperature using reliability, resilience, and vulnerability. The results indicate that the extreme precipitation events under climate change will occur earlier than in the past. In addition, episodes of extremely high temperature may last longer up to 19·7% than under the no‐change climate scenario. This study points out that the revision of the design storms (e.g. 100‐ or 250‐year return period) is warranted for the west and the south east region of the basin. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
105.
Dong-Kyun Kim Yeon-Hee Kim Kwan-Young Chung 《Asia-Pacific Journal of Atmospheric Sciences》2013,49(2):161-169
The vertical structure and microphysics of Typhoon Kompasu that caused a lot of damage associated with strong winds and heavy rainfall over the Seoul metropolitan area on 1~2 September 2010 were examined primarily from wind profiler measurements. Four different periods that represent a stratiform, outer rainband, inner rainband, and eyewall region during passage of Typhoon Kompasu from 1200 to 2300 UTC 1 September were selected based on bright band intensities and vertical profiles of radar reflectivities and Doppler velocities. The bright band signatures observed in all of these periods indicated that the structure of Kompasu was basically stratiform in a weakening phase. Maximum rainfall rates up to 50 mm hr?1 at the surface and mean wind speeds greater than 30 m s?1 in the 2–4 km layer were observed in the eyewall region. Unlike the other regions that showed nearly zero vertical air motions or weak downdrafts below a melting layer, a mean updraft of ~1 m s?1 was analyzed only in the eyewall region, which suggests that the updrafts may have enhanced drop growth that led to increasing surface rainfall rates. For each region, the vertical mean characteristics of rainfall parameters retrieved from wind profiler spectra below the melting layer were also examined. The rain properties between the inner and outer rainband were similar although they were apart with a distance of more than 100 km (> 2 hrs in time). The averaged mass-weighted mean diameters within the rainbands were larger than those in the stratiform and eyewall regions. A weaker bright band in the eyewall region suggests the presence of a relatively larger number of rimed particles associated with the updrafts around the melting layer. A stronger bright band was present in the rainbands, which indicates more active aggregation right above the melting layer. 相似文献
106.
Influence of depositional processes on the geotechnical parameters of Chicago glacial clays 总被引:1,自引:0,他引:1
The effects of depositional environment on properties, stress history, and undrained and drained shear-strength parameters are evaluated for Chicago glacial clay. Recent geology and basic depositional environments are described. Both laboratory and in-situ shear-strength evaluations have been conducted at several sites in the study area. Results of the investigations indicate that, while depositional environment has a large impact on the engineering properties of these clays, identification of the depositional environment is in itself insufficient to strength parameters. Post-depositional events are shown to alter the stress history imparted during deposition and thus impact shear-strength parameters. 相似文献
107.
The bioavailability of field‐aged Cd and Cu was calculated, and compared to the total concentrations determined by acid digestion. Only 0.60–4.15% for Cd and 0.59–9.43% for Cu were found to be bioavailable when determined by stomach‐phase extraction. The incorporation of bioavailability reduced more than 90% of the calculated risk of the metals at the site of study. It should be noted that such a reduction may not be generalized and the site‐specific bioavailability needs to be determined case by case. 相似文献
108.
R. M. Palin M. P. Searle D. J. Waters R. R. Parrish N. M. W. Roberts M. S. A. Horstwood M.‐W. Yeh S.‐L. Chung T. T. Anh 《Journal of Metamorphic Geology》2013,31(4):359-387
The Red River shear zone (RRSZ) is a major left‐lateral strike‐slip shear zone, containing a ductilely deformed metamorphic core bounded by brittle strike‐slip and normal faults, which stretches for >1000 km from Tibet through Yunnan and North Vietnam to the South China Sea. The RRSZ exposes four high‐grade metamorphic core complexes along its length. Various lithologies from the southernmost core complex, the Day Nui Con Voi (DNCV), North Vietnam, provide new constraints on the tectonic and metamorphic evolution of this region prior to and following the initial India–Asia collision. Analysis of a weakly deformed anatectic paragneiss using P–T pseudosections constructed in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNCKFMASHTO) system provides prograde, peak and retrograde metamorphic conditions, and in situ U–Th–Pb geochronology of metamorphic monazite yields texturally controlled age constraints. Tertiary metamorphism and deformation, overprinting earlier Triassic metamorphism associated with the Indosinian orogeny and possible Cretaceous metamorphism, are characterized by peak metamorphic conditions of ~805 °C and ~8.5 kbar between c. 38 and 34 Ma. Exhumation occurred along a steep retrograde P–T path with final melt crystallizing at the solidus at ≥~5.5 kbar at ~790 °C. Further exhumation at ~640–700 °C and ~4–5 kbar at c. 31 Ma occurred at subsolidus conditions. U–Pb geochronological analysis of monazite from a strongly deformed pre‐kinematic granite dyke from the flank of the DNCV provides further evidence for exhumation at this time. Magmatic grains suggest initial emplacement at 66.0 ± 1.0 Ma prior to the India–Asia collision, whereas grains with metamorphic characteristics indicate later growth at 30.6 ± 0.4 Ma. Monazite grains from a cross‐cutting post‐kinematic dyke within the core of the DNCV antiform provide a minimum age constraint of 25.2 ± 1.4 Ma for the termination of fabric development. A separate and significant episode of monazite growth at c. 83–69 Ma is suggested to be the result of fluid‐assisted recrystallization following the emplacement of magmatic units. 相似文献
109.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
110.
Measuring and analyzing internal dam temperature may provide insight into evaluating the integrity of earthen dams. Temperature in a dam, with the advent of modern distributed temperature sensing (DTS) technique, is conveniently measured. The analysis of the temperature is conducted based on a hydro-thermal coupled analysis technique. In this study, DTS-based temperature data and VS2DHI (a finite difference code for analyzing two-dimensional heat transport in porous media) were used to analyze the hydro-thermal coupled behavior in a dam. The results of this analysis show that the temperature variation in an earthen dam is closely related to seepage conditions. Additionally, a localized high-temperature (26 °C) zone found in the measured data of the dam, which raised concern to engineers on site, is explained through either hot water infiltration into the foundation layer or lower permeability of the foundation layer than the magnitude that appeared in the design document. These findings demonstrate that hydro-thermal coupled analysis has the potential for evaluating the integrity of earthen dams. 相似文献