首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1291篇
  免费   67篇
  国内免费   21篇
测绘学   37篇
大气科学   83篇
地球物理   382篇
地质学   497篇
海洋学   143篇
天文学   158篇
综合类   9篇
自然地理   70篇
  2024年   3篇
  2023年   11篇
  2022年   14篇
  2021年   30篇
  2020年   29篇
  2019年   34篇
  2018年   50篇
  2017年   55篇
  2016年   74篇
  2015年   39篇
  2014年   54篇
  2013年   76篇
  2012年   72篇
  2011年   105篇
  2010年   71篇
  2009年   96篇
  2008年   77篇
  2007年   63篇
  2006年   63篇
  2005年   51篇
  2004年   51篇
  2003年   36篇
  2002年   37篇
  2001年   21篇
  2000年   14篇
  1999年   20篇
  1998年   13篇
  1997年   10篇
  1996年   6篇
  1995年   10篇
  1994年   12篇
  1993年   6篇
  1992年   4篇
  1991年   10篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1974年   2篇
  1972年   2篇
  1971年   5篇
  1970年   4篇
  1969年   1篇
排序方式: 共有1379条查询结果,搜索用时 22 毫秒
261.
Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ∼36°S), often gives rise to a buoyant coastal current (the ‘Plata plume’) that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ∼32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes.  相似文献   
262.
River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into an ecologically functional meandering channel. Experimental data collected using a distorted Froude‐scaled flume analysis show that channel expansion and widening, thalweg meandering and riffle and pool development are possible using discrete plantings of rigid, emergent vegetation, and the magnitudes of these adjustments depend on the shape of the vegetation zone and the density of the vegetation. These experimental results were verified and validated using a recently developed numerical model, and model output was then used to discuss mechanistically how rivers respond to the introduction of in‐stream woody vegetation. Finally, a hybrid method of meander design is proposed herein where managed vegetation plantings are used to trigger or force the desired morphologic response, transforming a straight, degraded reach into a more functional meandering corridor. It is envisioned that such numerical models could become the primary tool for designing future stream restoration programs involving vegetation and assessing the long‐term stability of such activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
263.
The abundance and distribution of rare earth elements (REE) and their signatures in the Vigo Ria were studied from 50 samples of surface sediments and related to the geological formation in its watershed. The total amount of REE in the Ria is heterogeneous. It ranges from 220 mg kg−1 in the southern middle Ria margin in the vicinity of the Galiñeiro geological shore complex, which contains REE-enriched minerals, to 2 mg kg−1 near the Ria mouth due to dilution with high levels of carbonated biogenic particles (31% of Ca). Rare earth elements of the Ria sediments are considerably enriched in light-REE relative to heavy-REE (a LREE/HREE ratio of 9.7±1.6) and also show a slightly negative Eu-anomaly. Low European shale normalised REE patterns were distinguished in the innermost sediments of Vigo Ria, but were not correlated with Al. This suggests a minor contribution of REE from upstream freshwater inputs to the sediments in the middle Vigo Ria zone. Normalised REE ratios in the middle Ria imply that fine particles enriched in REE may be exported from the Ria to shelf mud patches and REE can be useful as sediment tracers of Ria input on the shelf.  相似文献   
264.
The largest error in determining volcanic gas fluxes using ground based optical remote sensing instruments is typically the determination of the plume speed, and in the case of fixed scanning instruments also the plume height. We here present a newly developed technique capable of measuring plume height, plume speed and gas flux using one single instrument by simultaneously collecting scattered sunlight in two directions. The angle between the two measurement directions is fixed, removing the need for time consuming in-field calibrations. The plume height and gas flux is measured by traversing the plume and the plume speed is measured by performing a stationary measurement underneath the plume. The instrument was tested in a field campaign in May 2005 at Mt. Etna, Italy, where the measured results are compared to wind fields derived from a meso-scale meteorological model (MM5). The test and comparison show that the instrument is functioning and capable of estimating wind speed at the plume height.  相似文献   
265.
This paper presents a method to reconstruct the gas distribution inside a vertical cross section of a gas plume by combining data from two or more scanning DOAS instruments using a tomographic algorithm. The method can be applied to gas plumes from any single, elevated point source, such as a volcano or industrial chimney. Such two-dimensional concentration distributions may prove to be useful for example in plume chemistry, dispersion and environmental impact studies. Here we show the case with one scanning DOAS instrument located on each side of the plume, which is the easiest and most economic setup as well as the most useful in routine monitoring of e.g. volcanic gas emissions. The paper investigates the conditions under which tomographic reconstructions can be performed and discusses limitations of this setup. The proposed method has been studied theoretically by numerical simulations and has been experimentally tested during two field campaigns, with measurements of SO2 emissions from a volcano and a power plant. The simulations show that, under good measurement conditions, the algorithm presented performs well, which is further confirmed by the experimental results.  相似文献   
266.
Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.  相似文献   
267.
Tuff layers are vital stratigraphic tools that allow correlations to be made between widely dispersed exposures. Despite their widespread occurrence in the central Andes, tuffs from both natural exposures and sedimentary cores extracted from the region's extensive salars (salt pans) are relatively unstudied. Here we lay the foundation for a tephrostratigraphic framework in the central Andes (14–28°S) by chemically and morphologically characterizing ash shards, and in some cases dating 36 Neogene distal tuffs. These tuffs occur in lacustrine and alluvial deposits from the southern Bolivian Altiplano and adjacent Atacama Desert. All tuffs are calc-akaline rhyolites, consistent with their setting in the Central Andean Volcanic Zone. Five of the older tuffs were 40Ar/39Ar dated and yield an age range of 6.63–0.75 Ma. Organic material associated with tuffs deposited into paleolake sediments, paleowetland deposits, or urine-encrusted rodent middens provide constraints on the age of several Late Pleistocene and Holocene tuffs.These tuffs provide key stratigraphic markers and ages for lake cycles and archeological sites on the Bolivian Altiplano and for assessing rates of surficial processes and archeology in both the Atacama and Altiplano. While modern climate, and consequently questions about geomorphic processes and climate change, differs in the hyperarid Atacama and the semi-arid Altiplano, the most extensive air-fall tuffs covered both regions, placing the Atacama and the Bolivian Altiplano in the same tephrostratigraphic province. For example, the Escara B tuff (~1.85 Ma), can be securely identified in both the Altiplano and Atacama. On the Altiplano, dates from the Escara B and E tuffs securely establish the age of the Escara Formation—representing the oldest expansive lake documented on the Bolivian Altiplano. By contrast, the presence of the Escara B tuff below ~6 m of alluvial sediment at the Blanco Encalado site in the Atacama desert yields information about sedimentation rates in this hyperarid region. Indeed, most tuffs from the Atacama Desert are older than 600,000 years, even though they occur within fluvial terraces immediately adjacent to the alluvial fans that are still active. Most of these geomorphic surfaces in the Atacama also possess well-developed saline soils that, when combined with the radiometric ages of the distal tuffs, suggest slow rates of geomorphic change and exceptional landscape stability for this area during the Quaternary.In contrast, younger tuffs are more abundant in the more recent lake records of the Altiplano. The Chita tuff was deposited at ~15,650 cal yr B.P., during the regressive phase of the region's deepest late Quaternary lake cycle—the “Tauca lake cycle”—which spanned 18.1–14.1 cal yr B.P. Two Holocene tuffs, the Sajsi tuff and the Cruzani Cocha tuff, are widespread. The Sajsi tuff was deposited just before 1700 cal yr B.P., whereas the Cruzani Cocha tuff appears to be mid-Holocene in age and shows some chemical affinities to a Holocene tuff (202B) deposited between 4420 and 5460 cal yr B.P. in a urine-encased rodent midden in the Atacama Desert.  相似文献   
268.
The widespread availability of powerful desktop computers, easy‐to‐use software tools and geographic datasets have raised the quality problem of input data to be a crucial one. Even though accuracy has been a concern in every serious application, there are no general tools for its improvement. Some particular ones exist, however, and some results are presented here for a particular case of quantitative raster data: Digital Elevation Models (DEM). Two procedures designed to detect anomalous values (also named gross errors, outliers or blunders) in DEMs, but valid also for other quantitative raster datasets, were tested. A DEM with elevations varying from 181 to 1044 m derived from SPOT data has been used as a contaminated sample, while a manually derived DEM obtained from aerial photogrammetry was regarded as the ground truth to allow a direct performance comparison for the methods with real errors. It is assumed that a “better” value can be measured or obtained through some methodology once an outlier location is suggested. The options are different depending upon the user (DEM producers might go to the original data and make another reading, while end users might use interpolation). Both choices were considered in this experiment. Preliminary results show that for the available dataset, the accuracy might be improved to some extent with very little effort. Effort is defined here as the percentage of points suggested by the methodology in relation with its total number: thus 100 per cent effort implies that all points have been checked. The method proposed by López (1997) gave poor results, because it has been designed for errors with low spatial autocorrelation (which is not the case here). A modified version was then designed and compared with the method proposed by Felicísimo (1994). The three procedures can be applied both for error detection during DEM generation and by end users, and they might be of use for other quantitative raster data. The choice of the best methodology is different depending on the effort involved. The conclusions have been derived for a photogrammetrically obtained DEM; other production procedures might lead to different results.  相似文献   
269.
270.
New swath bathymetric, multichannel seismic and magnetic data reveal the complexity of the intersection between the extinct West Scotia Ridge (WSR) and the Shackleton Fracture Zone (SFZ), a first-order NW-SE trending high-relief ridge cutting across the Drake Passage. The SFZ is composed of shallow, ridge segments and depressions, largely parallel to the fracture zone with an `en echelon' pattern in plan view. These features are bounded by tectonic lineaments, interpreted as faults. The axial valley of the spreading center intersects the fracture zone in a complex area of deformation, where N120° E lineaments and E–W faults anastomose on both sides of the intersection. The fracture zone developed within an extensional regime, which facilitated the formation of oceanic transverse ridges parallel to the fracture zone and depressions attributed to pull-apart basins, bounded by normal and strike-slip faults.On the multichannel seismic (MCS) profiles, the igneous crust is well stratified, with numerous discontinuous high-amplitude reflectors and many irregular diffractions at the top, and a thicker layer below. The latter has sparse and weak reflectors, although it locally contains strong, dipping reflections. A bright, slightly undulating reflector observed below the spreading center axial valley at about 0.75 s (twt) depth in the igneous crust is interpreted as an indication of the relict axial magma chamber. Deep, high-amplitude subhorizontal and slightly dipping reflections are observed between 1.8 and 3.2 s (twt) below sea floor, but are preferentially located at about 2.8–3.0 s (twt) depth. Where these reflections are more continuous they may represent the Mohorovicic seismic discontinuity. More locally, short (2–3 km long), very high-amplitude reflections observed at 3.6 and 4.3 s (twt) depth below sea floor are attributed to an interlayered upper mantle transition zone. The MCS profiles also show a pattern of regularly spaced, steep-inclined reflectors, which cut across layers 2 and 3 of the oceanic crust. These reflectors are attributed to deformation under a transpressional regime that developed along the SFZ, shortly after spreading ceased at the WSR. Magnetic anomalies 5 to 5 E may be confidently identified on the flanks of the WSR. Our spreading model assumes slow rates (ca. 10–20 mm/yr), with slight asymmetries favoring the southeastern flank between 5C and 5, and the northwestern flank between 5 and extinction. The spreading rate asymmetry means that accretion was slower during formation of the steeper, shallower, southeastern flank than of the northwestern flank.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号