首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   8篇
  国内免费   5篇
测绘学   1篇
大气科学   24篇
地球物理   41篇
地质学   42篇
海洋学   24篇
天文学   40篇
自然地理   9篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   5篇
  2011年   14篇
  2010年   19篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有181条查询结果,搜索用时 46 毫秒
111.
The hydrodynamics of tree islands during the growth of newly planted trees has been found to be influenced by both vegetation biomass and geologic conditions. From July 2007 through June 2009, groundwater and surface-water levels were monitored on eight recently planted tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) facility in Boynton Beach, Florida, USA. Over the 2-year study, stand development coincided with the development of a water-table depression in the center of each of the islands that was bounded by a hydraulic divide along the edges. The water-table depression was greater in islands composed of limestone as compared to those composed of peat. The findings of this study suggest that groundwater evapotranspiration by trees on tree islands creates complex hydrologic interactions between the shallow groundwater in tree islands and the surrounding surface water and groundwater bodies.  相似文献   
112.
113.
Acidic atmospheric deposition has adversely affected aquatic ecosystems globally. As emissions and deposition of sulfur (S) and nitrogen (N) have declined in recent decades across North America and Europe, ecosystem recovery is evident in many surface waters. However, persistent chronic and episodic acidification remain important concerns in vulnerable regions. We evaluated acidification in 269 headwater streams during 2010–2012 along the Appalachian Trail (AT) that transits several ecoregions and is located downwind of high levels of S and N emission sources. Discharge was estimated by matching sampled streams to those of a nearby gaged stream and assuming equivalent daily mean flow percentiles. Charge balance acid-neutralizing capacity (ANC) values were adjusted to the 15th (Q15) and 85th flow percentiles (Q85) by applying the ANC/discharge slope among sample pairs collected at each stream. A site-based approach was applied to streams sampled twice or more and a second regression-based approach to streams sampled once to estimate episodic acidification magnitudes as the ANC difference from Q15 to Q85. Streams with ANC <0 μeq/L doubled from 16% to 32% as discharge increased from Q15 to Q85 according to the site-based approach. The proportion of streams with ANC <0 μeq/L at low flow and high flow decreased from north to south. Base cation dilution explained the greatest amount of episodic acidification among streams and variation in sulfate (SO42−) concentrations was a secondary explanatory variable. Episodic SO42− patterns varied geographically with dilution dominant in northern streams underlain by soils developed in glacial sediment and increased concentrations dominant in southern streams with older, highly weathered soils. Episodic acidification increased as low-flow ANC increased, exceeding 90 μeq/L in 25% of streams. Episodic increases in ANC were the dominant pattern in streams with low-flow ANC values <30 μeq/L. Chronic and episodic acidification remain an ecological concern among AT streams. The approach developed here could be applied to estimate the magnitude and extent of chronic and episodic acidification in other regions recovering from decreasing levels of atmospheric S and N deposition.  相似文献   
114.
115.
116.
A. Mantz  R. Sullivan  J. Veverka 《Icarus》2004,167(1):197-203
Images of Eros from the NEAR Shoemaker spacecraft reveal bright and dark albedo features on steep crater walls unlike markings previously observed on asteroids. These features have been attributed to the downslope movement of space-weathered regolith, exposing less weathered material (Science 292 (2001) 484; Meteor. Planet. Sci. 36 (2001) 1617; Icarus 155 (2002) 145). Here we present observations of the interiors of large craters (>1 km in diameter) to test this hypothesis and constrain the origin of the features. We find that bright regions in these craters correspond to steep slopes, consistent with previous work. The geographic distribution of craters with albedo variations shows no pattern and does not resemble the distribution of ponds, another phenomenon on Eros attributed to regolith movement. Shadows and other indications of topography are not observed at feature boundaries, implying that the transported layer is ?1 m thick. The presence of multiple bright and dark units on long slopes with sharp boundaries between them suggests that mobilized regolith may be halted by frictional or other effects before reaching the foot of the slope. Features on crater walls should darken at the same rate as bright ejecta deposits from crater formation; the lack of observed, morphologically fresh craters with bright interiors or ejecta suggests that the albedo patterns are younger than the most recently formed craters greater than about 100 m in diameter. Smaller or micrometeorite impacts, which would not necessarily leave evident deposits of bright ejecta, remain possible causes of albedo patterns. Although their effectiveness is difficult to assess, electrostatic processes and thermal creep are also candidates.  相似文献   
117.
A series of high resolution (10 cm) vertical profiles of iron were determined across the oxic/anoxic boundary in the Lower Pond of the Pettaquamscutt Estuary. Selective chemical treatments and multiple analytical methods were used to detemine the oxidation state and lability of iron across the oxic/anoxic boundary. The vertical distributions of dissolved and total iron were determined by atomic absorption spectroscopy, and dissolved Fe(II) and reducible iron were determined using a modified Ferrozine spectrophotometric method. Well-developed maxima of total dissolved iron ≈7·5 μM occurred within the oxic/anoxic transition zone. Analysis of Fe(II) by the FZ method indicates that more than 95% of the dissolved iron determined by atomic absorption spectroscopy within the maximum is in the form of Fe(II). The concentration of dissolved Fe(II) ranged from <4 nM in oxygenated surface waters to between 7 and 8 μM at the total dissolved iron maximum.Both dissolved and total iron samples were treated with ascorbic acid to quantify the fraction of iron that was reducible in this system. Dissolved iron is quantitatively reduced to Fe(II) by 3·5 m depth, and particulate iron was almost completely dissolved by 6 m. Thermodynamic speciation calculations indicate that the dominant species of Fe(II) in the anoxic waters is the Fe(HS)+complex. In addition, the concentration of Fe(II) in the anoxic zone appears to be controlled by precipitation of a sulfide phase, the ion activity product for waters below 7 m is in good agreement with the solubility product of mackinawite.The vertical distribution of oxidation states of the metals indicates non-equilibrium conditions due to microbiological and chemical processes occurring in the redox transition zone. A one-dimensional vertical, eddy diffusion model is presented that incorporates redox reactions of iron, sulfide and oxygen. The modeling suggests the maximum in Fe(II) can be achieved through inorganic oxidation and reduction reactions, however the depth at which the maximum occurs is sensitive to sulfide oxidation, which appears to be dominated by biological oxidation. The magnitude of the Fe(II) maximum depends on the flux of iron into the basin, and reductive dissolution of particulate iron.  相似文献   
118.
Thin layers are fine-scale structures with high concentrations of organisms or particles occurring over very small vertical scales (a few meters or less), but with large horizontal scales, often extending for many kilometers. Because of their small vertical scales, thin layers are traditionally under sampled, but when proper measurement techniques are used, thin layers have been found to be ubiquitous in stratified oceans. A multi-investigator, interdisciplinary study of thin layers was sponsored by the US Office of Naval Research under a research initiative termed: Layered Organization in the Coastal Ocean (LOCO). The goal of this program was to understand the properties of coastal thin layers and the interacting physical, chemical, biological and optical processes responsible for their formation, maintenance and dissipation. As part of this program, fine-scale vertical profiles (cm resolution) of biological, physical and chemical properties were made hourly over periods spanning 1–3 weeks during three summers in Monterey Bay, California USA. The vertical profiles were made using arrays of moored autonomous profilers. In total, these profilers made ~2000 individual vertical profiles and provided a unique view of phytoplankton thin layer spatial-temporal dynamics. The autonomous profiler data were supplemented with high-resolution ship-based profiling and discrete water sampling for identifications of organisms.Persistent phytoplankton thin layers were observed during each year in Monterey Bay; however, each year had very different biological and physical dynamics. During 2002, thin layers were dominated by the non-motile and potentially toxic diatom genus Pseudo-nitzschia; during 2005, thin layers were dominated by the highly motile dinoflagellate species Akashiwo sanguinea; and during 2006, a more complex phytoplankton assemblage was present, but thin layers of the toxic dinoflagellate species Alexandrium catenella frequently occurred. The variability in the vertical location of thin layers in 2002 was primarily controlled by physics, while behavior, e.g. diurnal vertical migration patterns and daytime near-surface aggregations, primarily controlled the location of thin layers in 2005 and 2006. In 2002, phytoplankton thin layers were present in the water column 87% of the time, in 2005, 56% of the time and in 2006, 21% of the time. The median integrated chlorophyll concentration within the thin layers was found to be approximately 47% of the total water column chlorophyll in 2002, 41% in 2005 and 33% in 2006. Additional results in this study describe the mechanisms driving the spatial-temporal dynamics of these phytoplankton thin layers with special emphasis on diel patterns and the specific relationships that thin layers have to biological and physical processes and water column optics.  相似文献   
119.
120.
We examined the solubility, mineralogy and geochemical transformations of sedimentary Fe in waterways associated with coastal lowland acid sulfate soils (CLASS). The waterways contained acidic (pH 3.26-3.54), FeIII-rich (27-138 μM) surface water with low molar Cl:SO4 ratios (0.086-5.73). The surficial benthic sediments had high concentrations of oxalate-extractable Fe(III) due to schwertmannite precipitation (kinetically favoured by 28-30% of aqueous surface water Fe being present as the FeIII species). Subsurface sediments contained abundant pore-water HCO3 (6-20 mM) and were reducing (Eh < −100 mV) with pH 6.0-6.5. The development of reducing conditions caused reductive dissolution of buried schwertmannite and goethite (formed via in situ transformation of schwertmannite). As a consequence, pore-water FeII concentrations were high (>2 mM) and were constrained by precipitation-dissolution of siderite. The near-neutral, reducing conditions also promoted SO4-reduction and the formation of acid-volatile sulfide (AVS). The results show, for the first time for CLASS-associated waterways, that sedimentary AVS consisted mainly of disordered mackinawite. In the presence of abundant pore-water FeII, precipitation-dissolution of disordered mackinawite maintained very low (i.e. <0.1 μM) S−II concentrations. Such low concentrations of S−II caused slow rates for conversion of disordered mackinawite to pyrite, thereby resulting in relatively low concentrations of pyrite (<300 μmol g−1 as Fe) compared to disordered mackinawite (up to 590 μmol g−1 as Fe). This study shows that interactions between schwertmannite, goethite, siderite, disordered mackinawite and pyrite control the geochemical behaviour of sedimentary Fe in CLASS-associated waterways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号