首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   13篇
  国内免费   1篇
测绘学   2篇
大气科学   31篇
地球物理   59篇
地质学   74篇
海洋学   8篇
天文学   13篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2018年   6篇
  2017年   11篇
  2016年   7篇
  2015年   9篇
  2014年   9篇
  2013年   16篇
  2012年   10篇
  2011年   15篇
  2010年   9篇
  2009年   14篇
  2008年   6篇
  2007年   5篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
41.
In many cases, the seismic response of bottom‐simulating reflectors is characterised by low frequencies called “low‐frequency shadow”. Generally, this phenomenon is interpreted as attenuation due to partial saturation with free gas. Actually, this frequency loss may have multiple causes, with a normal moveout stretch as a possible candidate. To analyse this phenomenon, we compute synthetic seismograms by assuming a lossy bottom‐simulating layer, with varying quality factor and thickness, bounded by the upper hydrate‐brine/gas‐brine and lower gas‐brine/brine interfaces. First, we estimate the shift of the centroid frequency of the power spectrum as a function of the travelled distance of the seismic pulse. Then, we perform one‐dimensional numerical experiments to quantify the loss of frequency of the seismic event below the bottom‐simulating reflector as a function of the quality factor of the bottom‐simulating layer and its thickness (due to wave interference). Then, we compute shot gathers to obtain the stacked section, with and without the normal moveout stretch correction and with and without the presence of wave attenuation in the bottom‐simulating layer. The results indicate that the low‐frequency shadow due to the normal moveout stretch is stronger than that due to attenuation and may constitute a false indicator of the presence of gas. In fact, often, the low‐frequency shadow overlies events with higher frequencies, in contradiction with the physics of wave propagation. This is particularly evident when the low‐frequency shadow is so extensive that the presence of high frequencies below cannot be justified by the acquisition geometry.  相似文献   
42.
An unsupervised neural network technique, Growing Cell Structures (GCS) was used to visualize geochemical differences between four different island arc volcanic rock types: basalts, andesites, dacites and rhyolites. The output of the method shows the cluster structure of the dataset clearly, and the relevant geochemical patterns and relationships between its variables. The data can be separated into four clusters, each associated with a specific volcanic rock type (basalt, andesite, dacite and rhyolite), according to a unique combination of major element concentrations. Following clustering, performance of the trained GCS network as a classifier of volcanic rock type was tested using two test datasets with major element concentration data for 312 and 496 island arc volcanic rock samples of known volcanic type. Preliminary classification results are promising. In the first test dataset 94% of basalts, 76% of andesites, 83% of dacites and 100% of the rhyolites were classified correctly. Successful classification rates in the second dataset were 100%, 80%, 77%, and 98% respectively. The success of the analysis suggests that neural networks analysis constitutes a useful analytical tool for identification of natural clusters and examination of the relationships between numeric variables in large datasets, and that can be used for automatic classification of new data.  相似文献   
43.
Wood export from a watershed is a function of peak annual discharge, but one hydrologic relationship alone does not fully explain observed variability. Consideration of physical processes that influence the amount of wood available for transport is needed. However, wood recruitment, storage, mobilization, breakage, and transport rates and processes remain difficult to quantify. A theoretical wood transport equation focused on variations in discharge was the motivation for investigation into watershed‐specific wood export rates. Herein, multiplicative coefficients categorized by water year type are developed, paired with the equation, and validated to provide a new method for prediction of wood export at the watershed scale. The coefficients are defined as representing a broad suite of watershed processes that encompass spatio‐temporally variable scales. Two complementary datasets from the 1097 km2 mountainous North Yuba River, California watershed were used. Wood surveys above New Bullards Bar Reservoir yielded a wood availability estimate of 250 000–300 000 m3 along the channel network. Annual wood export into the reservoir was field‐surveyed in 2010, 2012 and 2013, and estimated in seven years via remotely sensed images over the 30 year study period of water years 1985–2014. Empirical, watershed‐scale wood export rates ranged from 0.3–5.6%. Comparison of predicted quantities using the new DVWP (discharge variations modified by watershed processes) wood export equation to observed wood export quantities resulted in an aggregate error rate of ±10%. When individual wood export quantities were compared, predicted to observed varied by 0.5–3.0 times. Total wood export of 59 000–71 000 m3 was estimated over the 30 year period, yielding a rate of 1.8 to 2.2 m3/year/km2. Wood export predictive capabilities at the watershed scale may help water resource and regulatory agencies plan for wood transfers to augment downstream ecosystems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
44.
Phase relations of a phonolite (K1) and a tephri-phonolite (K2) from the Upper Miocene lavas in the Southeast Province of the Kerguelen Archipelago have been investigated in the P/T range 100–500 MPa and 700–900 °C at two fO2 conditions (~ NNO and ~ NNO+2.3) to clarify the differentiation and pre-eruptive conditions of these magmas. Crystallization experiments were performed in cold seal pressure vessels (CSPV) and internally heated pressure vessels (IHPV) at various XH2O, under reducing (log fO2 ~ NNO) and oxidizing conditions (log fO2 ~ NNO+2.3). Under reducing conditions, the resulting phase assemblage for K1 was: titanomagnetite, nepheline, alkali feldspar, clinopyroxene and biotite; under oxidizing conditions, the assemblage was: magnetite, plagioclase, alkali feldspar, nepheline, titanite (minerals given in the order of appearance with decreasing T at 200 MPa for 4 wt% water in the melt). It is emphasized that an effect of fO2 on the phase stability of feldspars and feldspathoides was observed. Comparison of the natural and experimental phase assemblages shows that the pre-eruptive conditions for K1 must have been in the log fO2 range NNO+1–NNO+2, at pressures above 200–250 MPa. Assuming a temperature of 800 °C, the water content of the melt is constrained to be between 4 and 6 wt% H2O. The pre-eruptive fO2 conditions for the less evolved sample K2 are more oxidizing with log fO2 close to NNO+2.3. The experimental results show that the enrichment of alkalis in residual melts during differentiation of tephri-phonolites is enhanced at high fO2.Editorial responsibility: J. Hoefs  相似文献   
45.
The assessment of net rainfall, defined as the intermediate hydrological variable linked in between the hillslope and the river network, is a challenge. This paper presents a method for net rainfall estimation, using inverse modelling associated to a geomorphology-based transfer function. The analysis is carried out in semi-arid Tunisia, with a dataset from event discharges in a mesoscale dryland basin. A complete sensitivity analysis is developed, along with a discussion of validity limits for simplifying assumptions and the identification of paths for improvement. This work could be relevant for data-scarce areas, thanks to the use of simple dynamic conceptualization and being based on observable geomorphological features, adjusted to the available data and knowledge.  相似文献   
46.
Wood in rivers plays a major role both ecologically and morphologically. In recent decades, due to human activities in the river channels and along the riparian zone, wood obstruction and jamming has exacerbated flooding hazards and infrastructure damage. Therefore, it is necessary to quantify the wood flux and discharge in rivers to improve wood hazard management. Among the various methods for monitoring the wood flux in a river, the streamside videography technique is effective given its high temporal and spatial resolution. Previous work monitored the wood discharge (m3/s) using this technique in the Ain River (France) during three floods (MacVicar and Piégay, 2012), and the same method is implemented on the Isère River (France) to obtain the statistics of wood discharge for two floods. Comparison between the two sites supports the generalization of both the monitoring technique and the link between wood discharge and flood characteristics. We first show that the maximum wood discharge is observed at bankfull discharge, and we confirm the three stage model proposed by MacVicar and Piégay (2012). Additionally, transverse distributions of the number of wood pieces and corresponding wood length appear to be similar for different flood magnitudes on each site. As a technical contribution, the use of the same technique on two sites allows for recommendations on key decisions related to the location and implementation of the equipment. Both statistical and technical contributions can be used by decision makers to implement this monitoring technique, acquire the wood transport parameters, and evaluate the potential wood hazards at local scale or along a river. © 2020 John Wiley & Sons, Ltd.  相似文献   
47.
The cloudiness fields simulated by a general circulation model and a validation using the International Satellite Cloud Climatology Project (ISCCP) satellite observations are presented. An adapted methodology is developed, in which the issue of the sub-grid scale variability of the cloud fields, and how it may affect the comparison exercise, is considered carefully. In particular different assumptions about the vertical overlap of cloud layers are made, allowing us to reconstruct the cloud distribution inside a model grid column. Carrying out an analysis directly comparable to that of ISCCP then becomes possible. The relevance of this method is demonstrated by its application to the evaluation of the cloud schemes used in Laboratoire de Météoroligie Dynamique (LMD) general circulation model. We compare cloud properties, such as cloud-top height and cloud optical thickness, analysed by ISCCP and simulated by the LMD GCM. The results show that a direct comparison of simulated low cloudiness and that shown from satellites is not possible. They also reveal some model deficiencies concerning the cloud vertical distribution. Some of these features depend little on the cloud overlap assumption and may reveal inadequate parameterisation of the boundary layer mixing or the cloud water precipitation rate. High convective clouds also appear to be too thick.  相似文献   
48.
49.
A topological representation of a rural catchment is proposed here in addition to the generally used topographic drainage network. This is an object‐oriented representation based on the identification of the inlets and outlets for surface water flow on each farmer's field (or plot) and their respective contributing areas and relationships. It represents the catchment as a set of independent plot outlet trees reaching the stream, while a given plot outlet tree represents the pattern of surface flow relationships between individual plots. In the present study, we propose to implement functions related to linear and surface elements of the landscape, such as hedges or road networks, or land use, to obtain what we call a landscape drainage network which delineates the effective contributing area to the stream, thus characterizing its topological structure. Landscape elements modify flow pathways and/or favour water infiltration, thus reducing the area contributing to the surface yield and modifying the structure of the plot outlet trees. This method is applied to a 4·4‐km2 catchment area comprising 43 955 pixels and 312 plots. While the full set of 164 plot outlet trees, with an average of 7 plots per tree, covers 100% of the total surface area of the catchment, the landscape drainage network comprises no more than 37 plot outlet trees with an average of 2 plots per tree, accounting for 52 and 7% of the catchment surface area, when taking account of linear elements and land use, respectively. This topological representation can be easily adapted to changes in land use and land infrastructure, and provides a simple and functional display for intercomparison of catchments and decision support regarding landscape and water management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
50.
This study is a synthesis of gas-related features in recent sediments across the western Black Sea basin. The investigation is based on an extensive seismic dataset, and integrates published information from previous local studies. Our data reveal widespread occurrences of seismic facies indicating free gas in sediments and gas escape in the water column. The presence of gas hydrates is inferred from bottom-simulating reflections (BSRs). The distribution of the gas facies shows (1) major gas accumulations close to the seafloor in the coastal area and along the shelfbreak, (2) ubiquitous gas migration from the deeper subsurface on the shelf and (3) gas hydrate occurrences on the lower slope (below 750 m water depth). The coastal and shelfbreak shallow gas areas correspond to the highstand and lowstand depocentres, respectively. Gas in these areas most likely results from in situ degradation of biogenic methane, probably with a contribution of deep gas in the shelfbreak accumulation. On the western shelf, vertical gas migration appears to originate from a source of Eocene age or older and, in some cases, it is clearly related to known deep oil and gas fields. Gas release at the seafloor is abundant at water depths shallower than 725 m, which corresponds to the minimum theoretical depth for methane hydrate stability, but occurs only exceptionally at water depths where hydrates can form. As such, gas entering the hydrate stability field appears to form hydrates, acting as a buffer for gas migration towards the seafloor and subsequent escape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号