首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   7篇
  国内免费   2篇
测绘学   3篇
大气科学   12篇
地球物理   9篇
地质学   69篇
海洋学   4篇
天文学   11篇
自然地理   19篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   15篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   10篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1972年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
11.
Holocene reef development was investigated by coring on Britomart Reef, a mid-shelf reef, 23 km long and 8 km wide situated 120 km north of Townsville in the central Great Barrier Reef (GBR). Two holes were drilled, Britomart 1 on a lagoon patch reef, and Britomart 2 on the windward reef crest. The Holocene reef (25·5 m) is the thickest yet recorded in the GBR and overlies an uneven substrate of weathered Pleistocene limestone. Mineralogical and geochemical analyses show that magnesian calcite and aragonite were converted to low Mg-calcite below the Holocene-Pleistocene disconformity. Corals above the interface have 7500–8500 ppm Sr, but 1650–1500 ppm just below it, decreasing to 400–800 ppm downwards. The intermediate Sr values could be due to partial replacement of aragonite by calcite or higher original Sr content in the corals. Three units are recognized in the Holocene: (1) coral boundstone unit, (2) coral framestone unit, and (3) coral rudstone unit. The coral boundstone unit forms the top 5 m of both cores and is algal-bound coral rubble similar to the present reef top. The coral framestone unit is composed of massive head corals Diploastrea heliopora and Porites sp., and is currently forming in patch reefs situated in the lagoon and along the reef front. The coral rudstone unit comprises coral rudstone and floatstone with unabraded, and unbound, coral clasts in muddy matrix. This matrix may be up to 30% sponge chips. Radiocarbon dating indicates the reef grew more rapidly under the lagoon than under the reef front from 7000 to 5000 yr BP. The rate of reef growth matched existing estimates of sea-level rise, but lagged approximately 1000 years (5–10 m) behind it. Most of the reef mass accumulated between 8500 and 5000 yr BP as a mound of debris, perhaps stabilized by seagrasses or algae. Accretion of the reef top in a windward direction between 5000 and 3000 yr BP created the present, steep reef-front profile.  相似文献   
12.
Detailed sampling and analysis of Jurassic pelagic limestones and marls from Italy, Hungary and Switzerland have enabled construction of an isotope stratigraphy across the Pliensbachian-Toarcian boundary with resolution to the zonal level. The oxygen-isotope record is unremarkable. The carbon isotopes, however, show two positive excursions: one, relatively minor, during the Pliensbachian, margaritatus Zone, subnodosus Subzone, the other, more major, during the Toarcian. early falciferum Zone, where a maximum δ13C value of 4·52%PDB is attained. These intervals are known to be favoured periods of organic-rich sedimentation in diverse parts of the globe and the isotopic excursions are interpreted as a response to abnormally high rates of storage of organic carbon in the sedimentary record. A comparable phenomenon has been documented from the Cenomanian-Turonian boundary in the Cretaceous where it has been referred to the influence of an ‘Oceanic Anoxic Event’. Some Italian sections spanning this Lower Jurassic interval contain organic-rich shales in the falciferum Zone; the isotopic signatures from their included, locally manganiferous carbonate betray a considerable diagenetic overprint and they cannot therefore be incorporated in a composite isotopic curve. Carbon isotopes from the organic carbon itself are extremely negative, falling to –33δPDB and, in one section examined in detail, correlate with the calcium-carbonate content of the shales; they may reflect a partial change to a non-calcified planktonic biota during deposition of this lime-poor interval, possibly responding to upwelling and increased fertility of near-surface waters. The onset of upwelling may have been as early as spinatum-tenuicostatum Zone time, that is, at the Pliensbachian-Toarcian boundary.  相似文献   
13.
ABSTRACT
The mineralogy and isotope geochemistry of carbonate minerals in the Coorong area are determined by the water chemistry of different depositional environments ranging from seawater to evaporitically modified continental water. The different isotopic compositions of coexisting calcite and dolomite suggest that each of the above two minerals was formed from water of composition and origin unique to that specific mineral. In addition, the dolomite was not formed by simple solid state cation exchange.
The occurrence of two types of dolomite was shown by isotope analysis and SEM observations. The dolomite, which is isotopically light (δ13C = -1 to -2% 0 ; δ18O=+3 to +5%0) and of fine grain size (˜ 0·5 μm) probably precipitated under the influence of evaporitically modified continental water. Coarser grained dolomite (up to 4 μm) is isotopically heavier (δ13C=+3 to +4%0; δ18O=+5 to + 6%0) contains Mg in excess of Ca and was formed in or close to equilibrium with atmospheric CO2 probably by the dolomitization of aragonite.  相似文献   
14.
The evolution of large bodies of silicic magma is an importantaspect of planetary differentiation. Melt and mineral inclusionsin phenocrysts and zoned phenocrysts can help reveal the processesof differentiation such as magma mixing and crystal settling,because they record a history of changing environmental conditions.Similar major element compositions and unusually low concentrationsof compatible elements (e.g. 0·45–4·6 ppmBa) in early-erupted melt inclusions, matrix glasses and bulkpumice from the Bishop Tuff, California, USA, suggest eutectoidfractional crystallization. On the other hand, late-eruptedsanidine phenocrysts have rims rich in Ba, and late-eruptedquartz phenocrysts have CO2-rich melt inclusions closest tocrystal rims. Both features are the reverse of in situ crystallizationdifferentiation, and they might be explained by magma mixingor crystal sinking. Log(Ba/Rb) correlates linearly with log(Sr/Rb)in melt inclusions, and this is inconsistent with magma mixing.Melt inclusion gas-saturation pressure increases with CO2 fromphenocryst core to rim and suggests crystal sinking. Some inclusionsof magnetite in late-erupted quartz are similar to early-eruptedmagnetite phenocrysts, and this too is consistent with crystalsinking. We argue that some large phenocrysts of late-eruptedquartz and sanidine continued to crystallize as they sank severalkilometers through progressively less differentiated melts.Probable diffusive modification of Sr in sanidine phenocrystsand the duration of crystal sinking are consistent with an evolutionaryinterval of some 100 ky or more. Crystal sinking enhanced thedegree of differentiation of the early-erupted magma and pointsto the importance of H2O (to diminish viscosity and enhancethe rate of crystal sinking) in the evolution of silicic magmas. KEY WORDS: crystal settling; differentiation; melt inclusions; rhyolite; trace elements  相似文献   
15.
Lüthgens, C., Böse, M. & Preusser, F. 2011: Age of the Pomeranian ice‐marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas, 10.1111/j.1502‐3885.2011.00211.x. ISSN 0300‐9843 The Pomeranian ice margin is one of the most prominent ice‐marginal features of the Weichselian glaciation in northern Europe. Previous results of surface‐exposure dating (SED) of this ice margin disagree with established chronologies and ice retreat patterns, i.e. are much younger than previously expected. We crosscheck the age of the Pomeranian ice‐marginal position in northeastern Germany using single‐grain quartz Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. OSL dating indicates an active ice margin between 20.1±1.6 ka and 19.4±2.4 ka forming outwash plains attributed to the Pomeranian ice‐marginal position. On the basis of these results, we suggest a critical reassessment of previous SED data available for the Pomeranian ice‐marginal position within their respective regional geomorphological contexts. From a process‐based point of view, SED ages derived from glacigenic boulders document the stabilization of the landscape after melting of dead ice and landscape transformation under periglacial conditions rather than the presence of an ice margin. SED indicates a first phase of boulder stabilization at around 16.4±0.7 ka, followed by landscape stabilization within the area attributed to the recessional Gerswalder subphase around 15.2±0.5 ka. A final phase of accumulation of glaciolacustrine and glaciofluvial sediments at around 14.7±1.0 ka documents the melting of buried dead ice at that time.  相似文献   
16.
17.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   
18.
土城子组/后城组为广泛分布在中国北方的燕山褶皱冲断带和盆地中晚侏罗世的典型碎屑岩沉积。本文主要是针对目前在燕山地区的通行的有关土城子组/后城组、及其之下的髫髻山组/蓝旗组,和上覆的张家口组/东岭台组火山岩的相关对比方法提出质疑。其他同行近期发表相关的氩-氩法和铀-铅法同位素测年数据指出髫髻山组/蓝旗组年龄为175~147Ma、土城子组/后城组年龄为156~139Ma、张家口组/东岭台组年龄为147~127Ma,显而易见,上述地层组的年龄是相互重叠的。这些测年数据说明以往的地层对比是有问题的,燕山造山带在中、晚侏罗世所发育的火山岩和沉积岩地层是穿时的。因此,传统上用(165±5)Ma和(135±5)Ma之间的区域不整合来作为划分髫髻山组和后城组的层序界限是值得商榷的。尽管一些髫髻山组的火山岩和土城子组/后城组的沉积岩是与向南或向北的冲断作用相伴生的,但在髫髻山组和土城子组/后城组沉积之间的30~35Ma的时间间隔内却是相对的构造平静期。这一结论是基于以往的髫髻山组和土城子组之间为假整合或平行不整合的观点所得出的。新近基于对承德盆地土城子组地层形成研究分析认为承德冲断层的实际位移距离应小于Davis等2001年所提出的位移距离,笔者接受这一观点。但笔者并不同意在承德地区土城子组的沉积主要是受控于承德北部的向南冲断作用。现今承德向形盆地主要是由于向北冲断的承德县冲断层下盘变形的结果,主要是(1)它向北发生倒转;(2)盆地南部的粗碎屑沉积的物源主要是来源于承德县的异地体。土城子组/后城组的沉积没有必要完全受控于构造作用。土城子组/后城组的沉积是紧随着在燕山部分地区发生的,持续了20~25Ma的髫髻山组/蓝旗组火山及岩浆活动。在中、晚侏罗世期间,燕山地区的岩浆活动必定导致地形的起伏,这就为快速剥蚀及粗碎屑的沉积提供了有利条件。最后需要指出的是,从前所提及的有关燕山带的土城子组/后城组和阴山带的大青山组的地层对比的依据并不存在。  相似文献   
19.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   
20.
The Special Sensor Microwave/Imager (SSM/I) radiometer is a useful tool for monitoring snow wetness on a large scale because water content has a significant effect on the microwave emissions at the snowpack surface. To date, SSM/I snow wetness algorithms, based on statistical regression analysis, have been developed only for specific regions. Inadequate ground-based snow wetness measurements and the non-linearity between SSM/I brightness temperatures (TBs) and snow wetness over varied vegetation covered terrain has impeded the development of a general model. In this study, we used a previously developed linear relationship between snowpack surface wetness (% by volume) and concurrent air temperature (°C) to estimate the snow wetness at ground weather stations. The snow condition (snow free, dry, wet or refrozen snow) of each SSM/I pixel (a 37 × 29 km area at 37.0 GHz) was determined from ground-measured weather data and the TB signature. SSM/I TBs of wet snow were then linked with the snow wetness estimates as an input/output relationship. A single-hidden-layer back-propagation (backprop) artificial neural network (ANN) was designed to learn the relationships. After training, the snow wetness values estimated by the ANN were compared with those derived by regression models. Results show that the ANN performed better than the existing regression models in estimating snow wetness from SSM/I data over terrain with different amounts of vegetation cover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号