首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   2篇
  国内免费   6篇
测绘学   5篇
大气科学   69篇
地球物理   3篇
地质学   6篇
海洋学   34篇
天文学   1篇
自然地理   3篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   15篇
  2009年   84篇
  2007年   1篇
  2005年   1篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1984年   1篇
  1953年   3篇
  1947年   2篇
  1942年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
101.
The El Niño/Southern Oscillation (ENSO) constitutes a major source of potential predictability in the tropics. The majority of past seasonal prediction studies have concentrated on precipitation anomalies at the seasonal mean timescale. However, fields such as agriculture and water resource management require higher time frequency forecasts of precipitation variability. Regional climate models (RCMs), with their increased resolution, may offer one means of improving general circulation model forecasts of higher time frequency precipitation variability.
Part I of this study evaluated the ability of the Rossby Centre regional atmospheric model (RCA), forced by analysed boundary conditions, to simulate seasonal mean precipitation anomalies over the tropical Americas associated with ENSO variability. In this paper the same integrations are analysed, with the focus now on precipitation anomalies at subseasonal (pentad) timescales.
RCA simulates the climatological annual cycle of pentad-mean precipitation intensity quite accurately. The timing of the rainy season (onset, demise and length) is well simulated, with biases generally of less than 2 weeks. Changes in the timing and duration of the rainy season, associated with ENSO forcing, are also well captured. Finally, pentad-mean rainfall intensity distributions are simulated quite accurately, as are shifts in these distributions associated with ENSO forcing.  相似文献   
102.
An aliasing operator is introduced to mimic the effect of aliasing that causes discontinuities in radial-velocity observations, and to modify the observation term in the costfunction for direct assimilations of aliased radar radial-velocity observations into numerical models. It is found that if the aliasing operator is treated as a part of the observation operator and applied to the analysed radial velocity in a conventional way, then the analysis is not ensured to be aliased (or not aliased) in consistency with the aliased (or not aliased) observation at every observation point. Thus, the analysis-minus-observation term contains a large alias error whenever an inconsistency occurs at an observation point. This causes fine-structure discontinuities in the costfunction. An unconventional approach is thus introduced to apply the aliasing operator to the entire analysis-minus-observation term at each observation point in the observation term of the costfunction. With this approach, the costfunction becomes smooth and concave upwards in the vicinity of the global minimum. The usefulness of this approach for directly assimilating aliased radar radial-velocity observations under certain conditions is demonstrated by illustrative examples.  相似文献   
103.
To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around  (26 ± 6)%  , a dominant biogenic contribution of on average  (73 ± 7)%  in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to  (1.4 ± 0.2)  in summer and up to  (2.5 ± 1.0)  in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3–1.7.  相似文献   
104.
105.
Approximately 30% of the land surface is arid, having desert or semi-desert conditions. Aerosol originating from these regions plays a significant role in climate and atmospheric chemistry of the atmosphere. Retrieving aerosol properties from space-borne platforms above desert conditions, where the surface reflectance is usually very bright, is a challenging task. The proportion of the surface to top of atmosphere (TOA) reflectance can reach values over 90%, especially for wavelength above 500 nm. For these reasons detailed knowledge of aerosol and surface optical properties from these regions is required to separate atmosphere from intrinsically bright surfaces.
An approach to retrieve aerosol properties over arid and semi-arid regions based on the Bremen Aerosol Retrieval (BAER) has been developed and validated within the Dust Aerosol Retrievals from Space-Born Instruments (DREAMS) Project, which is part of the Saharan Mineral Dust Experiment ( SAMUM, 2006 ). Combining measurements of the backscattered radiation from the Medium Resolution Imaging Spectrometer (MERIS) instrument aboard Environmental Satellite (ENVISAT) and ground-based measurements in Morocco in radiation closure experiments yields the aerosol optical properties of mineral dust at selected locations.  相似文献   
106.
The summer of 2003 was an active forest fire season in Siberia. Several events of elevated carbon monoxide (CO) were observed at Rishiri Island in northern Japan during an intensive field campaign in September 2003. A simulation with a global chemistry-transport model is able to reproduce the general features of the baseline levels and variability in the observed CO, and a source attribution for CO in the model suggests that the contribution from North Asia dominated, accounting for approximately 50% on average, with contributions of 7% from North America and 8% from Europe and 30% from oxidation of hydrocarbons. With consideration of recent emission estimates for East Asian fossil fuel and Siberian biomass burning sources, the model captures the timing and magnitude of the CO enhancements in two pollution episodes well (17 and 24 September). However, it significantly underestimates the amplitude during another episode (11–13 September), requiring additional CO emissions for this event. Daily satellite images from AIRS reveal CO plumes transported from western Siberia toward northern Japan. These results suggest that CO emissions from biomass burning in western Siberia in 2003 are likely underestimated in the inventory and further highlight large uncertainties in estimating trace gas emissions from boreal fires.  相似文献   
107.
The dynamics of non-divergent flow on a rotating sphere are described by the conservation of absolute vorticity. The analytical study of the non-linear barotropic vorticity equation is greatly facilitated by the expansion of the solution in spherical harmonics and truncation at low order. The normal modes are the well-known Rossby–Haurwitz (RH) waves, which represent the natural oscillations of the system. Triads of RH waves, which satisfy conditions for resonance, are of critical importance for the distribution of energy in the atmosphere.
We show how non-linear interactions of resonant RH triads may result in dynamic instability of large-scale components. We also demonstrate a mathematical equivalence between the equations for an orographically forced triad and a simple mechanical system, the forced-damped swinging spring. This equivalence yields insight concerning the bounded response to a constant forcing in the absence of damping. An examination of triad interactions in atmospheric reanalysis data would be of great interest.  相似文献   
108.
Determining size-resolved chemical composition of aerosols is important for modelling the aerosols' direct and indirect climate impact, for source–receptor modelling, and for understanding adverse health effects of particulate pollutants. Obtaining this kind of information from optical remote sensing observations is an ill-posed inverse problem. It can be solved by variational data assimilation in conjunction with an aerosol transport model. One important question is how much information about the particles' physical and chemical properties is contained in the observations. We perform a numerical experiment to test the observability of size-dependent aerosol composition by remote sensing observations. An aerosol transport model is employed to produce a reference and a perturbed aerosol field. The perturbed field is taken as a proxy for a background estimate subject to uncertainties. The reference result represents the 'true' state of the system. Optical properties are computed from the reference results and are assimilated into the perturbed model. The assimilation results reveal that inverse modelling of optical observations significantly improves the background estimate. However, the optical observations alone do not contain sufficient information for producing a faithful retrieval of the size-resolved aerosol composition. The total mass mixing ratios, on the other hand, are retrieved with remarkable accuracy.  相似文献   
109.
Lifting of dust particles by dust devils and convective plumes may significantly contribute to the global mineral dust budget. During the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006 vertical profiling of dusty plumes was performed for the first time. Polarization lidar observations taken at Ouarzazate (30.9°N, 6.9°W, 1133 m height above sea level) are analyzed. Two cases with typical and vigorous formation of convective plumes and statistical results of 5 d are discussed. The majority of observed convective plumes have diameters on order of 100–400 m. Most of the plumes (typically 50–95%) show top heights <1 km or 0.3DLH with the Saharan dust layer height DLH of typically 3–4 km. Height-to-diameter ratio is mostly 2–10. Maximum plume top height ranges from 1.1 to 2.9 km on the 5 d. 5–26 isolated plumes and clusters of plumes per hour were detected. A low dust optical depth (<0.3) favours plume evolution. Observed surface, 1 and 2–m air temperatures indicate that a difference of 17–20 K between surface and 2-m air temperature and of 0.9–1 K between the 1 and 2-m temperatures are required before convective plumes develop. Favourable horizontal wind speeds are 2–7 m s−1.  相似文献   
110.
During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated ( R 2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R 2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10−3, 3.4 × 10−3 and 2.0 × 10−3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10−3, 1.6 × 10−3 and 4.5 × 10−4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号