首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2404篇
  免费   61篇
  国内免费   61篇
测绘学   67篇
大气科学   377篇
地球物理   533篇
地质学   597篇
海洋学   634篇
天文学   185篇
综合类   37篇
自然地理   96篇
  2024年   2篇
  2023年   5篇
  2022年   22篇
  2021年   38篇
  2020年   40篇
  2019年   48篇
  2018年   118篇
  2017年   112篇
  2016年   160篇
  2015年   77篇
  2014年   154篇
  2013年   212篇
  2012年   104篇
  2011年   143篇
  2010年   146篇
  2009年   148篇
  2008年   137篇
  2007年   136篇
  2006年   107篇
  2005年   101篇
  2004年   104篇
  2003年   67篇
  2002年   54篇
  2001年   48篇
  2000年   33篇
  1999年   32篇
  1998年   23篇
  1997年   18篇
  1996年   14篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有2526条查询结果,搜索用时 15 毫秒
141.
In order to investigate surf zone hydrodynamics through two-dimensional numerical simulations of nearshore circulation under random wave environment, a nearshore circulation model, SHORECIRC, and a random wave model, SWAN, were combined and utilized. Using this combined model, a numerical simulation of the October 2, 1997 SandyDuck field experiment was performed. For this simulation, field topography and an input offshore spectrum were constructed using observed data sets synchronized with the experiment. The wave-breaking model in SWAN was modified by using breaker parameters varied according to bottom slope. The simulation results were compared with the experimental data, which revealed a well-developed longshore current, as well as with results using other combinations which were SHORECIRC and its original monochromatic wave-driver, and SHORECIRC and the default of SWAN. The results from the novel combined model agreed well with the experimental data. The results of the present simulation also indicate that alongshore field topography influences shear fluctuation of longshore currents.  相似文献   
142.
A bio-optical dataset collected during the 1998?C2007 period in the Yellow and East China Seas (YECS) was used to provide alternative empirical ocean-color algorithms in the retrieval of chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) absorption coefficients at 440 nm (ag440). Assuming that remote-sensing reflectance (Rrs) could be retrieved accurately, empirical algorithms for TChl (regionally tuned Tassan??s Chl-a algorithm) in case-1 waters (TChl2i in case-2 waters), TTSM (regionally tuned Tassan??s TSM algorithm), and Tag440 or Cag440 (regionally tuned Tassan??s or Carder??s ag440 algorithm) were able to retrieve Chl-a, TSM, and ag440 with uncertainties as high as 35, 46, and 35%, respectively. Applying the standard SeaWiFS Rrs, TChl was not viable in the eastern part of the YECS, which was associated with an inaccurate SeaWiFS Rrs retrieval because of improper atmospheric correction. TChl behaved better than other algorithms in the turbid case-2 waters, although overestimation was still observed. To retrieve more reliable Chl-a estimates with standard SeaWiFS Rrs in turbid water (a proxy for case-2 waters), we modified TChl for data with SeaWiFS normalized water-leaving radiance at 555 nm (nLw555) > 2 mW cm?2 ??m?1 sr?1 (TChl2s). Finally, with standard SeaWiFS Rrs, we recommend switching algorithms from TChl2s (for case-2 waters) to MOCChl (SeaWiFS-modified NASA OC4v4 standard algorithm for case-1 waters) for retrieving Chl-a, which resulted in uncertainties as high as 49%. To retrieve TSM and ag440 using SeaWiFS Rrs, we recommend empirical algorithms for TTSM (pre-SeaWiFS-modified form) and MTag440 or MCag440 (SeaWiFS Rrs-modified forms of Tag440 or Cag440). These could retrieve with uncertainties as high as 82 and 52%, respectively.  相似文献   
143.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   
144.
A single specimen of the pelagic shrimps, Pasiphaea japonica Omori, 1976 (Pasiphaeidae) collected in the southeastern waters of Korea is described and illustrated. Although this species occurs widely in the Indo-West Pacific including the Japanese coast of the East/Japan Sea and the middle and southern parts of the East China Sea, this is the first record of the species and the genus in Korean waters. The species is distinguished from other congeners by the following combination of characteristics: non-carinate dorsal sixth abdominal somite with a terminal tooth, rudimentary pleurobranch on the eighth thoracic somite, merus of the first pereopod with more than eight spines, and almost entirely transparent white color.  相似文献   
145.
This study aims to investigate a hybrid gravity base foundation to support offshore wind tower. A new hybrid gravity base foundation considered in this study has five component piles, referred to as ‘piled gravity base foundation’. The three-dimensional finite element analyses were carried out for the piled gravity base foundation subjected to a combined load with a lateral load and overturning moment. The parametric analyses were undertaken varying the loading height and direction, the rigidity of the piled gravity base foundation, the field soil layers, and the clay strength. Overall, the response of the piled gravity base foundation was significantly influenced by the interaction between the cone base piles and the surrounding soil. The increased strength of the soil led to a significant reduction of the pile and gravity base foundation responses, in terms of the bending moments, axial forces, lateral displacements, and rotations.  相似文献   
146.
Is the ocean floor a fractal?   总被引:1,自引:0,他引:1  
The topographic structure of the ocean bottom is investigated at different scales of resolution to answer the question: Can the seafloor be described as a fractal process? Methods from geostatistics, the theory of regionalized variables, are used to analyze the spatial structure of the ocean floor at different scales of resolution. The key to the analysis is the variogram criterion: Self-similarity of a stochastic process implies self-similarity of its variogram. The criterion is derived and proved here: it also is valid for special cases of self-affinity (in a sense adequate for topography). It has been proposed that seafloor topography can be simulated as a fractal (an object of Hausdorff dimension strictly larger than its topological dimension), having scaling properties (self-similarity or self-affinity). The objective of this study is to compare the implications of these concepts with observations of the seafloor. The analyses are based on SEABEAM bathymetric data from the East Pacific Rise at 13°N/104°W and at 9°N/104°W and use tracks that run both across the ridge crest and along the ridge flank. In the geostatistical evaluation, the data are considered as a stochastic process. The spatial continuity of this process is described by variograms that are calculated for different scales and directions. Applications of the variogram criterion to scale-dependent variogram models yields the following results: Although the seafloor may be a fractal in the sense of the definition involving the Hausdorff dimension, it is not self-similar, nor self-affine (in the given sense). Mathematical models of scale-dependent spatial structures are presented, and their relationship to geologic processes such as ridge evolution, crust formation, and sedimentation is discussed.  相似文献   
147.
We observed unusually high levels (> 440 μatm) of carbon dioxide fugacity (fCO2) in surface seawater in the western subtropical North Pacific, the area where Subtropical Mode Water is formed, during summer 2015. The NOAA Kuroshio Extension Observatory moored buoy located in this region also measured high CO2 values, up to 500 μatm during this period. These high sea surface fCO2 (fCO2SW) values are explained by much higher normalized total dissolved inorganic carbon and slightly higher normalized total alkalinity concentrations in this region compared to the equatorial Pacific. Moreover, these values are much higher than the climatological CO2 values, even considering increasing atmospheric CO2, indicating a recent large increase in sea surface CO2 concentrations. A large seasonal change in sea surface temperature contributed to higher surface fCO2SW in the summer of 2015.  相似文献   
148.
We present an interpolation model that describes Holocene groundwater level rise and the creation of accommodation space in 3D in the Rhine‐Meuse delta – the Netherlands. The model area (ca. 12 400 km2) covers two palaeovalleys of Late Pleistocene age (each 30 km wide) and the overlying Holocene deposits of the Rhine‐Meuse delta, the Holland coastal plain, and the Zuiderzee former lagoon. Water table rise is modelled from 10 800 to 1000 cal. BP, making use of age‐depth relations based on 384 basal peat index points, and producing output in the form of stacked palaeo groundwater surfaces, groundwater age‐depth curves, and voxel sets. These products allow to resolve (i) regional change and variations of inland water table slopes, (ii) spatial differences in the timing and pacing of transgression, and (iii) analysis of interplay of coastal, fluvial and subsidence controls on the provision of accommodation space. The interpolation model is a multi‐parameter trend function, to which a 3D‐kriging procedure of the residuals is added. This split design deploys a generic approach for modelling provision of accommodation space in deltas and coastal lowlands, aiming to work both in areas of intermediate data availability and in the most data‐rich environments. Major provision of accommodation space occurred from 8500 cal BP onwards, but a different evolution occurred in each of the two palaeovalleys. In the northern valley, creation of accommodation space began to stall at 7500 cal BP, while in the southern valley provision of new accommodation space in considerable quantities continued longer. The latter is due to the floodplain gradient that was maintained by the Rhine, which distinguishes the fluvial deltaic environment from the rest of the back‐barrier coastal plain. The interpolation results allow advanced mapping and investigation of apparent spatial differences in Holocene aggradation in larger coastal sedimentary systems. Furthermore, they provide a means to generate first‐order age information with centennial precision for 3D geological subsurface models of Holocene deltas and valley fills. As such, the interpolation is of use in studies into past and present land subsidence and into low land sedimentation.  相似文献   
149.
150.
This paper reports a design study for a space-based decametric wavelength telescope. While not a new concept, this design study focused on many of the operational aspects that would be required for an actual mission. This design optimized the number of spacecraft to insure good visibility of approx. 80% of the radio galaxies– the primary science target for the mission. A 5,000 km lunar orbit was selected to guarantee minimal gravitational perturbations from Earth and lower radio interference. Optimal schemes for data downlink, spacecraft ranging, and power consumption were identified. An optimal mission duration of 1 year was chosen based on science goals, payload complexity, and other factors. Finally, preliminary simulations showing image reconstruction were conducted to confirm viability of the mission. This work is intended to show the viability and science benefits of conducting multi-spacecraft networked radio astronomy missions in the next few years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号