首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1882篇
  免费   73篇
  国内免费   18篇
测绘学   37篇
大气科学   129篇
地球物理   447篇
地质学   732篇
海洋学   188篇
天文学   210篇
综合类   3篇
自然地理   227篇
  2021年   19篇
  2020年   33篇
  2019年   30篇
  2018年   43篇
  2017年   53篇
  2016年   56篇
  2015年   48篇
  2014年   59篇
  2013年   93篇
  2012年   60篇
  2011年   105篇
  2010年   88篇
  2009年   99篇
  2008年   90篇
  2007年   55篇
  2006年   92篇
  2005年   71篇
  2004年   64篇
  2003年   75篇
  2002年   56篇
  2001年   36篇
  2000年   41篇
  1999年   34篇
  1998年   36篇
  1997年   33篇
  1996年   31篇
  1995年   26篇
  1994年   27篇
  1993年   25篇
  1992年   21篇
  1991年   17篇
  1990年   23篇
  1989年   23篇
  1988年   16篇
  1987年   18篇
  1986年   21篇
  1985年   21篇
  1984年   25篇
  1983年   18篇
  1982年   31篇
  1981年   17篇
  1980年   10篇
  1979年   16篇
  1978年   18篇
  1977年   12篇
  1976年   16篇
  1975年   13篇
  1974年   7篇
  1973年   14篇
  1970年   6篇
排序方式: 共有1973条查询结果,搜索用时 0 毫秒
31.
目前,“可再生能源”这个词已进入技术发展的阶段。我们目前利用的能源是不可再生的。我们生活在都市中。由于太阳光照射1小时的能量即可满足我们一年的能源需要,今后的能源利用必定要考虑太阳能。利用地球内部的热量梯度即地热能在今后亦是诱人的。原子能尤其是聚变能的潜力极大,但尚没有迹象表明,人类非得将精力消耗在利用裂变能上不可,尽管目前这方面的技术有被滥用的趋势。  相似文献   
32.
Lack of long-term studies on drought in the boreal region of northwest Ontario limits our ability to assess the vulnerability of this region to climate change. We investigated changes in diatoms, scaled chrysophytes, and sedimentary pigments in two near-shore cores from Gall Lake to infer limnological and water-level changes over the last two millennia. The two coring locations, at modern water depths of 7.5 and 11.5 m, were selected to contrast inferences for past lake level based on distance from the modern water-depth boundary between predominantly benthic and planktonic diatom assemblages in surface sediments (6.0 m). Diatom-inferred depth inferences were more variable in the core from 7.5-m water depth, consistent with the hypothesis that the greatest changes occurred at water depths closest to the benthic:planktonic boundary. Both sites revealed a pronounced drought from ~AD 950 to 1300, synchronous with the medieval climate anomaly (MCA). This finding suggests a northeast expansion of the arid MCA into northwest Ontario, extending the known spatial extent of this megadrought. Scaled chrysophytes and sedimentary pigments suggest a recent increase in thermal stratification. Our findings indicate this region is more susceptible to changes in moisture than was previously suspected based on the instrumental record for the past century.  相似文献   
33.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   
34.
A diver-operated piston corer suitable for collecting cores of >3 m length from fine-grained nearshore sediment has been developed. The corer uses a platform that rests on the sediment surface supporting both the operators and a derrick that maintains the piston at the sediment-water interface. The core is insected into and recovered from the sediment manually. The technique offers several advantages; low cost, minimal disruption of the sediment-water interface, little compaction of the sediment, the ability to collect longer length cores than is possible with gravity corers, and the ability to be deployed from relatively small boats. Dissolved ammonium and inorganic carbon data are presented from a 3.3-m core collected by this technique from Tomales Bay, California.  相似文献   
35.
As part of the Canadian contribution to the International Polar Year (IPY), several major international research programs have focused on offshore arctic marine ecosystems. The general goal of these projects was to improve our understanding of how the response of arctic marine ecosystems to climate warming will alter food web structure and ecosystem services provided to Northerners. At least four key findings from these projects relating to arctic heterotrophic food web, pelagic-benthic coupling and biodiversity have emerged: (1) Contrary to a long-standing paradigm of dormant ecosystems during the long arctic winter, major food web components showed relatively high level of winter activity, well before the spring release of ice algae and subsequent phytoplankton bloom. Such phenological plasticity among key secondary producers like zooplankton may thus narrow the risks of extreme mismatch between primary production and secondary production in an increasingly variable arctic environment. (2) Tight pelagic-benthic coupling and consequent recycling of nutrients at the seafloor characterize specific regions of the Canadian Arctic, such as the North Water polynya and Lancaster Sound. The latter constitute hot spots of benthic ecosystem functioning compared to regions where zooplankton-mediated processes weaken the pelagic-benthic coupling. (3) In contrast with another widely shared assumption of lower biodiversity, arctic marine biodiversity is comparable to that reported off Atlantic and Pacific coasts of Canada, albeit threatened by the potential colonization of subarctic species. (4) The rapid decrease of summer sea-ice cover allows increasing numbers of killer whales to use the Canadian High Arctic as a hunting ground. The stronger presence of this species, bound to become a new apex predator of arctic seas, will likely affect populations of endemic arctic marine mammals such as the narwhal, bowhead, and beluga whales.  相似文献   
36.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   
37.
The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global‐scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional‐scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional‐scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional‐scale models with global‐scale analyses would greatly enhance knowledge of the global groundwater depletion problem.  相似文献   
38.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
39.
Spinel lherzolite xenoliths from Tertiary basaltic host magmas at Allyn River, eastern Australia reveal two distinct petrographic and geochemical types. One group is distinguished by xenoliths with undeformed, equilibrated microstructures and interstitial melt patches; The second group shows deformation and contains abundant fluid inclusions but no melt patches. Trace-element signatures of clinopyroxene in these xenoliths provide evidence for metasomatism by a silicate agent with hydrous component and by a carbonate-rich agent respectively.

Melt patches in the undeformed xenoliths contain secondary minerals including clinopyroxene, olivine, feldspar, Mg- and Ca-rich carbonate, apatite, ilmenite and spinel. They are interpreted to represent volatile-rich melt captured shortly prior to entrainment in the host basalt. Sulfide globules, now recrystallised to discrete sulfide phases but inferred to be molten at lithospheric mantle T and P, are closely associated with the melt patches. The close association between sulfide and highly mobile, volatile-bearing fluid has important implications for the mobility of Re and Os, the use of their isotopes in dating mantle events, and the possible effect of volatile-bearing metasomatic agents on their composition.  相似文献   

40.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号