首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1594篇
  免费   63篇
  国内免费   17篇
测绘学   35篇
大气科学   116篇
地球物理   400篇
地质学   572篇
海洋学   153篇
天文学   196篇
综合类   3篇
自然地理   199篇
  2023年   6篇
  2021年   18篇
  2020年   33篇
  2019年   27篇
  2018年   37篇
  2017年   49篇
  2016年   49篇
  2015年   39篇
  2014年   48篇
  2013年   79篇
  2012年   52篇
  2011年   99篇
  2010年   81篇
  2009年   92篇
  2008年   76篇
  2007年   49篇
  2006年   83篇
  2005年   68篇
  2004年   54篇
  2003年   57篇
  2002年   46篇
  2001年   28篇
  2000年   30篇
  1999年   22篇
  1998年   31篇
  1997年   21篇
  1996年   29篇
  1995年   22篇
  1994年   26篇
  1993年   20篇
  1992年   17篇
  1991年   12篇
  1990年   18篇
  1989年   17篇
  1988年   13篇
  1987年   11篇
  1986年   16篇
  1985年   19篇
  1984年   21篇
  1983年   14篇
  1982年   29篇
  1981年   17篇
  1980年   7篇
  1979年   13篇
  1978年   13篇
  1977年   10篇
  1976年   10篇
  1975年   5篇
  1974年   5篇
  1973年   13篇
排序方式: 共有1674条查询结果,搜索用时 31 毫秒
111.
A study of the isotopic composition of plankton from Woods Hole Harbor was conducted to investigate seasonal variation in carbon and nitrogen stable isotopes in a shallow coastal environment. Stable isotopic ratios of carbon and nitrogen both showed temporal variation on the scale of weeks to months, with heaviest (most positive) values in summer to fall for both isotopes. Particulate organic matter (POM) δ13C values were highest (?19‰ to ?21‰) in August to November and lower (?21‰ to ?25‰) at other times of the year, while δ13N-POM values were highest (9.5‰ to 12‰) in March to September and lower (7.5‰ to 9.5‰) at other times of the year. Stable isotopic values were significantly correlated with temperature, DI13C, and C∶N ratios, but not with [DIC], [POC], [PN], [chlorophyll], or the taxonomic composition of the phytoplankton. There was no direct evidence of allochthonous inputs of carbon and nitrogen to the system. Woods Hole δ13C values were virtually identical to Georges Bank plankton values; similar POC: Chlorophyll and C∶N ratios in the two systems further suggest that Woods Hole Harbor is principally a marine system. The high δ13C values of net plankton (>20 μm) during summer and early fall are consistent with a smaller degree of photosynthetic isotopic fractionation at that time, related to temperature and/or [CO2(aq)]. This pattern was not seen, however, in total POM. Plankton δ13N values were higher in Woods Hole Harbor than on Georges Bank, especially during warmer periods, possibly due to high rates of nitrification and organic matter recycling in Woods Hole waters. Relatively wide ranges of stable isotopic values from both Woods Hole Harbor and Georges Bank suggest that seasonality should be considered when attempting to establish endmember C and N isotopic values for temperate marine plankton. Preliminary results from size-fractionated samples suggest that cyanobacteria may fractionate carbon isotopes to a greater degree than net phytoplankton.  相似文献   
112.
113.
Covenants and restrictions (C&Rs) have increased in popularity in recent decades, being commonly applied in new residential developments. Despite the fact that developers are more commonly writing C&Rs for their developments, little research has investigated how well C&Rs actually fit the preferences of residents. Recognizing this gap in the literature, this paper examines the fit of neighborhood C&Rs with resident preferences in Porter County, Indiana, a growing suburban/exurban place in the Chicago Metropolitan Statistical Area. The researcher conducted in-depth interviews with 51 residents to ascertain how well C&Rs fit resident preferences. The majority of interviewees stated that C&Rs match resident preferences because they believed that C&Rs promoted subdivision tidiness and worked to support property values. The minority view was that C&Rs do not fit because they are too strict and residents do not obey C&Rs. Interviewees who perceived a fit were more likely to have a lower level of engagement with C&Rs and were more likely to live in developments with no C&R enforcement attempts by the homeowners’ association (HOA). The results suggest the particular content of C&Rs does not seem to fit resident preference; rather the fact that C&Rs are not enforced fits resident preference. Seemingly, residents are content being unaware of the C&Rs, then they do not know if someone is breaking the rules or not. This may imply that residents would not want to have C&Rs in the first place.  相似文献   
114.
A major tsunamigenic earthquake is expected in the near future along the coast of West Sumatra Province of Indonesia. In the city of Padang, the arrival time of the tsunami is expected to be ~30 min. Currently, there are approximately 400,000 people in the city living within the potential inundation zone. This study aimed to complement the existing research in appraising possible risk reduction interventions, specifically looking at enabling the timely evacuation of the area. This research, developed in consultation with national and local authorities, emergency planners and NGOs, analysed interventions for tsunami risk reduction in Padang through the development of a pedestrian and vehicular evacuation model and the appraisal of possible solutions to enhance the evacuation rates. Some of the conclusions from this research can be applied to other areas in Southeast Asia where the traffic patterns are similar to those in Padang and where the distance to safety is greater than 4–5 km. For the case of Padang, the results show that pedestrian evacuation is strongly preferable to vehicular evacuation due to the limited road capacity and the high population density. In the present situation, however, 70–80 % of the population in Padang could not evacuate within 30 min, even by foot. Common interventions such as widening roads and building bridges prove to be relatively ineffective in this case due to the large distance that has to be covered in a short time. These interventions would only have a decisive impact if a longer evacuation time was available (more than 60 min). In the case of Padang, the evacuation rate in the first 30 min is strongly dependent on the presence/absence of evacuation shelters, whose effectiveness is limited by the capacity of the structures. Building a few high-capacity and high-resilience structures such as evacuation hills is a more effective and robust evacuation strategy than constructing many small high-raised buildings. Even with evacuation structures, wider roads and bridges, about 20 % of the population would still be unable to reach safety by the time the tsunami arrives. This means about 70,000 people of Padang’s current population, which is rapidly increasing. The building of evacuation shelters may be a viable option for saving lives in the short term, but it is not a sustainable option in the medium to long term. It is therefore also necessary to set up and enforce regulations for land use planning that take into account the tsunami risk and prevent further urban development for the areas that may be affected by a tsunami.  相似文献   
115.
Prescribed fire management generally stimulates plant biomass production in coastal marsh systems. This study was conducted to understand the interactive effects of the mechanisms of fire on vegetation production. The effects of canopy removal and ash deposition on biomass production were investigated in two manipulative experiments at the Blackwater National Wildlife Refuge, Dorchester County, MD. On non-burned sites, canopy removal increased biomass production above and belowground (40 and 260?%, respectively), while ash deposition showed no effect on production. On burned sites, post-burn canopy replacement decreased biomass production above and belowground (41 and 40?%, respectively). Production increased more in response to canopy removal at sites dominated by Schoenoplectus americanus than at sites dominated by Spartina patens and Distichlis spicata. Canopy removal was the dominant mechanism through which fire affected biomass production in this study. If increased biomass production is a desirable outcome, prescribed fire programs may benefit by maximizing canopy removal.  相似文献   
116.
An in-depth review of the more commonly applied methods used in the determination of the fractal dimension of one-dimensional curves is presented. Many often conflicting opinions about the different methods have been collected and are contrasted with each other. In addition, several little known but potentially useful techniques are also reviewed. General recommendations which should be considered whenever applying any method are made.  相似文献   
117.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
118.
Mountain snowpacks provide most of the annual discharge of western US rivers, but the future of water resources in the western USA is tenuous, as climatic changes have resulted in earlier spring melts that have exacerbated summer droughts. Compounding changes to the physical environment are biotic disturbances including that of the mountain pine beetle (MPB), which has decimated millions of acres of western North American forests. At the watershed scale, MPB disturbance increases the peak hydrograph, and at the stand scale, the ‘grey’ phase of MPB canopy disturbance decreases canopy snow interception, increases snow albedo, increases net shortwave radiation, and decreases net longwave radiation versus the ‘red’ phase. Fewer studies have been conducted on the red phase of MPB disturbance and in the mixed coniferous stands that may follow MPB‐damaged forests. We measured the energy balance of four snowpacks representing different stages of MPB damage, management, and recovery: a lodgepole pine stand, an MPB‐infested stand in the red phase, a mixed coniferous stand (representing one successional trajectory), and a clear‐cut (representing reactive management) in the Tenderfoot Creek Experimental Forest in Montana, USA. Net longwave radiation was lower in the MPB‐infested stand despite higher basal area and plant area index of the other forests, suggesting that the desiccated needles serve as a less effective thermal buffer against longwave radiative losses. Eddy covariance observations of sensible and latent heat flux indicate that they are of similar but opposite magnitude, on the order of 20 MJ m?2 during the melt period. Further analyses reveal that net turbulent energy fluxes were near zero because of the temperature and atmospheric vapour pressure encountered during the melt period. Future research should place snow science in the context of forest succession and management and address important uncertainties regarding the timing and magnitude of needlefall events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
119.
Progressive rock‐fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high‐resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15‐month‐long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock‐fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3 progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls. Published in 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   
120.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号