首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   7篇
  国内免费   10篇
测绘学   4篇
大气科学   22篇
地球物理   32篇
地质学   36篇
海洋学   48篇
天文学   26篇
综合类   7篇
自然地理   2篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   12篇
  2016年   5篇
  2015年   10篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   12篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   13篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1964年   1篇
  1962年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
81.
Daily changes in phytoplankton abundance and species composition were monitored from July to September 2003 (n=47) to understand which factors control the abundance at a station in Jangmok Bay. During the study, the phytoplankton community was mainly composed of small cell diatoms and dinoflagellates, and the dominant genera wereChaetoceros,Nitzschia, Skeletonema andThalassionema. Phytoplankton abundance varied significantly from 6.40x104 to 1.22x107 cells/l. The initially high level of phytoplankton abundance was dominated by diatoms, but replacement by dinoflagellates started when the N/P ratio decreased to < 5.0. On the basis of the N/P and Si/N ratios, the sampling period could be divided into two: an inorganic silicate limitation period (ISLP, 14th July-12th of August) and an inorganic nitrogen limitation period (INLP, 13th of August - the end of the study). Phosphate might not limit the growth of phytoplankton assemblages in the bay during the study period. This study suggests that phytoplankton abundance and species composition might be affected by the concentrations of inorganic nutrients (N and Si), and provides baseline information for further studies on plankton dynamics in Jangmok Bay.  相似文献   
82.
Correction factors based on the catch ratios of egg and larval densities in the southern waters of Korea were estimated for anchovyEngraulis japonica. This was undertaken in order to adjust ichthyoplankton data from different sampling methods, gear types and time. Samples were collected during ichthyoplankton surveys in Korean waters from 1983 to 1994. The ratios for egg densities obtained in vertical tows with a NORPAC net (ring Φ, 45 cm) compared to those obtained in oblique tows with a KOB net (ring Φ, 80 cm) were 0.86 (CV = 0.65), 1.22 (CV = 0.36), and 0.93 (CV = 0.42) for early, middle, and later developmental stages, respectively. The ratios for larval densities for vertical and oblique tows varied depending on size. For yolk-sac and small larvae (< 4 mm), the ratios were 3.08 (CV = 0.45) and 1.98 (CV = 1.34), while those of 4-6 mm, 6-8 mm, and 8-10 mm larvae were 0.44 (CV = 1.31), 0.45 (CV = 1.70), and 0.56 (CV = 2.50), respectively. Ratios of day/night densities for larvae of 4-10 mm lengths were lower (0.01-0.06) in offshore catches than values obtained in coastal areas (0.44-0.46) and similar values (0.16-0.04) for vertical and oblique tows. Our results indicated that vertical towing is more efficient for sampling early life stages (from eggs to larvae less than 4 mm long), while oblique towing is more efficient for larvae longer than 4 mm due to depth preferences for each developmental stage (e.g., changes in egg buoyancy and vertical migration of larvae).  相似文献   
83.
We quantified the increase in the sediment-water interface created by the burrowing activities of the resident macrofaunal community and its variation with respect to the physical conditions of the habitat on a tidal fat. We investigated environmental factors and dimensions of macrofaunal burrows with respect to tidal height and vegetation during spring and summer at three sites. A resin-casting method was used to quantify the dimensions of all burrows at each site. The dimensions of macrofaunal burrows varied both temporally and spatially and the increase in the sediment-water interface reached a maximum of 311%, ranging from 20 to 255% under different habitat conditions. The sediment-water interface depended on the duration of exposure resulting from tidal height, increased temperatures resulting from seasonality, and marsh plant density. Burrows were deeper and more expansive at both higher tidal levels and higher temperatures in summer. Burrow dimensions were sharply reduced with the disappearance of adult macrofauna in areas where the roots of the marsh plant Suaeda japonica were dense. The significance of this study lies in quantifying the burrow dimensions of the entire macrofaunal community, rather than just a single population, and confirming their spatial and temporal variation with respect to physical conditions of the habitat. Environmental factors responsible for variation in burrow dimensions are discussed.  相似文献   
84.
Recent changes in climate and environmental conditions have had great negative effects such as decreasing sea ice thickness and the extent of Arctic sea ice floes that support ice-related organisms. However, limited field observations hinder the understanding of the impacts of the current changes in the previously ice-covered regions on sea ice algae and other ice-related ecosystems. Our main objective in this study was to measure recent primary production of ice algae and their relative contribution to total primary production (ice plus pelagic primary production). In-situ primary productivity experiments with a new incubation system for ice algae were conducted in 3 sea ice cores at 2 different ice camps in the northern Chukchi Sea, 2014, using a 13C and 15N isotope tracer technique. A new incubation system was tested for conducting primary productivity experiments on ice algae that has several advantages over previous incubation methods, enabling stable carbon and nitrogen uptake experiments on ice algae under more natural environmental conditions. The vertical C-shaped distributions of the ice algal chl-a, with elevated concentrations at the top and bottom of the sea ice were observed in all cores, which is unusual for Arctic sea ice. The mean chl-a concentration (0.05 ± 0.03 mg chl-a m?3) and the daily carbon uptake rates (ranging from 0.55 to 2.23 mg C m?2 d?1) for the ice algae were much lower in this study than in previous studies in the Arctic Ocean. This is likely because of the late sampling periods and thus the substantial melting occurring. Ice algae contributed 1.5–5.7% of the total particulate organic carbon (POC) contents of the combined euphotic water columns and sea ice floes. In comparison, ice algae contributed 4.8–8.6% to the total primary production which is greater than previously reported in the Arctic Ocean. If all of the ice-associated productions were included, the contributions of the sea ice floes to the total primary production would be greater in the Arctic Ocean and their importance would be greater in the arctic marine ecosystems.  相似文献   
85.
We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p < 0.0001). OLI3 made the largest contribution to the final model (relative coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.  相似文献   
86.
The detection of tonals embedded in noise is an important sonar function and the traditional power spectrum analysis method has been widely used for this purpose. Wagstaff et al. (1997) proposed the WISPR (Wagstaff's Integration Silencing PRocessor) family processors, which perform a nonlinear integration or combination of the power spectrum observations. In this paper, we analyze the statistical property of the power spectrum observations and develop novel tonal detectors by optimally integrating the spectrum observations. The optimal detectors are derived by using the method of maximum likelihood hypothesis test. The results from simulations and real sea trial data have shown that the proposed detectors are promising in detecting tonals  相似文献   
87.
88.
We have constructed synthetic solar spectra for the 2302-4800 cm−1 (2.08-4.34 μm) range, a spectral range where planetary objects mainly emit reflected sunlight, using ATMOS (Atmospheric Trace Molecule Spectroscopy)/Spacelab-3 and Atlas-3 spectra, of which resolution is 0.01 cm−1. We adopted Voigt line profiles for the modeling of line shapes based on an atlas of line identifications compiled by Geller [Geller, M., 1992. Key to Identification of Solar Features. A High-Resolution Atlas of the Infrared Spectrum of the Sun and the Earth Atmosphere from Space. NASA Reference Publ. 1224, vol. III. NASA, Washington, DC, pp. 1-22], who derived solar line positions and intensities from contaminated high-resolution solar spectra obtained by ATMOS/Spacelab-3. Because the ATMOS spectra in these wavelength ranges are compromised by absorption lines of molecules existing in Earth's high-altitude atmosphere and in the compartment of the spacecraft, the direct use of these high-resolution solar spectra has been inconvenient for the data reductions of planetary spectra. We compared the synthetic solar spectra with the ATMOS spectra, and obtained satisfactory fits for the majority of the solar lines with the exception of abnormal lines, which do not fit with Voigt line profiles. From the model fits, we were able to determine Voigt line parameters for the majority of solar lines; and we made a list of the abnormal lines. We also constructed telluric-line-free solar spectra by manually eliminating telluric lines from the ATMOS spectra and filling the gaps with adjacent continua. These synthetic solar spectra will be useful to eliminate solar continua from spectra of planetary objects to extract their own intrinsic spectral features.  相似文献   
89.
The Andong pluton consists of comagmatic granitoid rocks which constitute outstanding examples of reversely zoned granitoids. The pluton has three lithofacies: hornblende biotite tonalite, biotite granodiorite and porphyritic biotite granite. The zoned pattern forms by locating a tonalite core containing high-temperature mafic assemblages in central part,granodiorite rims in marginal part, and a porphyritic granite cap containing more felsic assemblages in topside of the pluton.Mineral abundances as well as bulk compositions of the granitoids indicate that the interior is enriched in mafic minerals and that it shows higher contents of oxides than the margin and topside. The compositional gradients change gradually with continuity between the lithofacies. The regular compositional variations within the pluton support the argument that the pluton behaved as an individual petrochemical system. Model abundances of the granitoids are in agreement with the bulk compositional gradients, suggesting that no significant interaction with country rocks occurred. Remobilization (resurgence) of deeper parts of the system into the more felsic magmas of the chamber explains the reverse zoning. Fractional crystallization was of importance and probably accounts for the selective removal of the settling phases. The Andong pluton is an example of reversely zoned plutons related by remobilization of more mafic but consanguineous magmas. Large-scale upwelling occurred in the pluton leading to the present arrangement of three lithofacies. It is conceivable that remnants of the reverse zoning become more difficult to discern as the plutonic rocks reach the latest stages of their evolution. In this case, the Andong pluton represents an earlier stage in the evolution of a felsic system that is usually represented by the final stages in normally zoned plutons.  相似文献   
90.
We present a nitrogen cycle model for pre-industrial times based on an extensive literature database. The model consists of 18 reservoirs in the domains of the atmosphere, land, and ocean. The biotic reservoirs on land and in the ocean (N-fixing plants, non-N-fixing plants, and marine biota) interact with atmospheric N2 and dissolved inorganic nitrogen (DIN, consisting of N2, NO3 ?, and NH4 +) in the ocean and soil waters. Marine DIN is taken up by marine biota and transformed from ocean particulate organic matter to dissolved organic nitrogen and the ocean sediment. The atmosphere, the largest nitrogen reservoir, supplies N2 to the system by N fixation, deposition, and dissolution, and these input fluxes are balanced by denitrification and volatilization back to the atmosphere. The land and ocean domains are linked by river transport, which carries both dissolved and particulate nitrogen to the oceanic coastal zone. The isotope–mass balances of the N reservoirs are calculated from the isotopic composition of the reservoirs and the fractionation factors accompanying the fluxes between the reservoirs based on reported values from different natural conditions. The model sensitivity was tested for different biouptake rates and was run with various human perturbations, including fertilization, nitrous oxide emissions, population-related sewage disposal, land-use changes, and temperature-dependent rate kinetics. The new N mass–isotope cycle model provides the basis for assessment of the impact of artificial fertilization between 1700 and 2050. The perturbation experiments in this study suggest that land-use change is the key factor altering the N mass cycle since industrialization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号