首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   2篇
大气科学   1篇
地球物理   19篇
地质学   44篇
海洋学   3篇
天文学   22篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   13篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   6篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有92条查询结果,搜索用时 62 毫秒
31.
Infiltrating river water carries the temperature signal of the river into the adjacent aquifer. While the diurnal temperature fluctuations are strongly dampened, the seasonal fluctuations are much less attenuated and can be followed into the aquifer over longer distances. In one-dimensional model with uniform properties, this signal is propagated with a retarded velocity, and its amplitude decreases exponentially with distance. Therefore, time shifts in seasonal temperature signals between rivers and groundwater observation points may be used to estimate infiltration rates and near-river groundwater velocities. As demonstrated in this study, however, the interpretation is nonunique under realistic conditions. We analyze a synthetic test case of a two-dimensional cross section perpendicular to a losing stream, accounting for multi-dimensional flow due to a partially penetrating channel, convective-conductive heat transport within the aquifer, and heat exchange with the underlying aquitard and the land surface. We compare different conceptual simplifications of the domain in order to elaborate on the importance of different system elements. We find that temperature propagation within the shallow aquifer can be highly influenced by conduction through the unsaturated zone and into the underlying aquitard. In contrast, regional groundwater recharge has no major effect on the simulated results. In our setup, multi-dimensionality of the flow field is important only close to the river. We conclude that over-simplistic analytical models can introduce substantial errors if vertical heat exchange at the aquifer boundaries is not accounted for. This has to be considered when using seasonal temperature fluctuations as a natural tracer for bank infiltration.  相似文献   
32.
Data on the variation of the orbital inclination of the balloon satellite Explorer 24 (1964-76A) from 1964 to 1968 have been used to determine zonal winds between 540 and 620 km. In this height region the effect of zonal winds on the orbital inclination may become very small compared to other perturbations like accelerations due to the geopotential, lunisolar gravitation and the solar radiation pressure. It is demonstrated especially that the solar radiation pressure may become the most significant force changing the orbital inclination. The diurnal mean zonal winds derived from Explorer 24 point to an exospheric rotation rate which is about 6–10% less than the rotation rate of the Earth in the analyzed height region. Since the possible errors of the data analysis are of a similar order of magnitude, it can not be excluded that the exosphere corotates with the Earth. Furthermore, a local time dependence of the zonal winds could be detected. The diurnal varitation of the zonal wind is shown to be in good agreement with the theoretical model of Blum and Harris. Our results are discussed and compared with all previous investigations of orbital inclination changes of satellites above 350 km.  相似文献   
33.
Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well‐known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
34.
35.
We investigated three comets, which are active at large heliocentric distances, using observations obtained at the 6-m BTA telescope (SAO RAS, Russia) in the photometric mode of the focal reducer SCORPIO. The three comets, 29P/Schwassmann-Wachmann 1, C/2003 WT42 (LINEAR), and C/2002 VQ94 (LINEAR), were observed after their perihelion passages at heliocentric distances between 5.5 and 7.08 AU. The dust production rates in terms of Afρ was measured for these comets. Using the retrieved values, an average dust production rate was derived under different model assumptions. A tentative calculation of the total mass loss of the comet nucleus within a certain observation period was executed. We calculated the corresponding thickness of the depleted uppermost layer where high-volatile ices completely sublimated. The results obtained in our study strongly support the idea that the observed activity of Comet SW1 requires a permanent demolition of the upper surface layers.  相似文献   
36.
B. Gundlach  S. Kilias  E. Beitz  J. Blum 《Icarus》2011,214(2):717-723
Coagulation models assume a higher sticking threshold for micrometer-sized ice particles than for micrometer-sized silicate particles. However, in contrast to silicates, laboratory investigations of the collision properties of micrometer-sized ice particles (in particular, of the most abundant H2O-ice) have not been conducted yet. Thus, we used two different experimental methods to produce micrometer-sized H2O-ice particles, i.e. by spraying H2O droplets into liquid nitrogen and by spraying H2O droplets into a cold nitrogen atmosphere. The mean particle radii of the ice particles produced with these experimental methods are (1.49 ± 0.79) μm and (1.45 ± 0.65) μm. Ice aggregates composed of the micrometer-sized ice particles are highly porous (volume filling factor: ? = 0.11 ± 0.01) or rather compact (volume filling factor: ? = 0.72 ± 0.04), depending on the method of production. Furthermore, the critical rolling friction force of FRoll,ice = (114.8 ± 23.8) × 10−10 N was measured for micrometer-sized ice particles, which exceeds the critical rolling friction force of micrometer-sized SiO2 particles . This result implies that the adhesive bonding between micrometer-sized ice particles is stronger than the bonding strength between SiO2 particles. An estimation of the specific surface energy of micrometer-sized ice particles, derived from the measured critical rolling friction forces and the surface energy of micrometer-sized SiO2 particles, results in γice = 0.190 J m−2.  相似文献   
37.
E. Beitz  C. Güttler  R. Weidling  J. Blum 《Icarus》2012,218(1):701-706
The formation of planetesimals in the early Solar System is hardly understood, and in particular the growth of dust aggregates above millimeter sizes has recently turned out to be a difficult task in our understanding (Zsom, A., Ormel, C.W., Güttler, C., Blum, J., Dullemond, C.P. [2010]. Astron. Astrophys., 513, A57). Laboratory experiments have shown that dust aggregates of these sizes stick to one another only at unreasonably low velocities. However, in the protoplanetary disk, millimeter-sized particles are known to have been ubiquitous. One can find relics of them in the form of solid chondrules as the main constituent of chondrites. Most of these chondrules were found to feature a fine-grained rim, which is hypothesized to have formed from accreting dust grains in the solar nebula. To study the influence of these dust-coated chondrules on the formation of chondrites and possibly planetesimals, we conducted collision experiments between millimeter-sized, dust-coated chondrule analogs at velocities of a few cm s?1. For 2 and 3 mm diameter chondrule analogs covered by dusty rims of a volume filling factor of 0.18 and 0.35–0.58, we found sticking velocities of a few cm s?1. This velocity is higher than the sticking velocity of dust aggregates of the same size. We therefore conclude that chondrules may be an important step towards a deeper understanding of the collisional growth of larger bodies. Moreover, we analyzed the collision behavior in an ensemble of dust aggregates and non-coated chondrule analogs. While neither the dust aggregates nor the solid chondrule analogs show sticking in collisions among their species, we found an enhanced sicking efficiency in collisions between the two constituents, which leads us to the conjecture that chondrules might act as “catalyzers” for the growth of larger bodies in the young Solar System.  相似文献   
38.
In this work, we present a new model for the heat conductivity of porous dust layers in vacuum, based on an existing solution of the heat transfer equation of single spheres in contact. This model is capable of distinguishing between two different types of dust layers: dust layers composed of single particles (simple model) and dust layers consisting of individual aggregates (complex model). Additionally, we describe laboratory experiments, which were used to measure the heat conductivity of porous dust layers, in order to test the model. We found that the model predictions are in an excellent agreement with the experimental results, if we include radiative heat transport in the model. This implies that radiation plays an important role for the heat transport in porous materials. Furthermore, the influence of this new model on the Hertz factor are demonstrated and the implications of this new model on the modeling of cometary activity are discussed. Finally, the limitations of this new model are critically reviewed.  相似文献   
39.
IODP Expedition 350 was the first to be drilled in the rear part of the Izu-Bonin, although several sites had been drilled in the arc axis to fore-arc region; the scientific objective was to understand the evolution of the Izu rear arc, by drilling a deep-water volcaniclastic section with a long temporal record (Site U1437). The Izu rear arc is dominated by a series of basaltic to dacitic seamount chains up to ~100-km long roughly perpendicular to the arc front. Dredge samples from these are geochemically distinct from arc front rocks, and drilling was undertaken to understand this arc asymmetry. Site U1437 lies in an ~20-km-wide basin between two rear arc seamount chains, ~90-km west of the arc front, and was drilled to 1804 m below the sea floor (mbsf) with excellent recovery. We expected to drill a volcaniclastic apron, but the section is much more mud-rich than expected (~60%), and the remaining fraction of the section is much finer-grained than predicted from its position within the Izu arc, composed half of ashes/tuffs, and half of lapilli tuffs of fine grain size (clasts <3 cm). Volcanic blocks (>6.4 cm) are only sparsely scattered through the lowermost 25% of the section, and only one igneous unit was encountered, a rhyolite peperite intrusion at ~1390 mbsf. The lowest biostratigaphic datum is at 867 mbsf (~6.5 Ma), the lowest palaeomagnetic datum is at ~1300 mbsf (~9 Ma), and the rhyolite peperite at ~1390 mbsf has yielded a U–Pb zircon concordia intercept age of (13.6 + 1.6/?1.7) Ma. Both arc front and rear arc sources contributed to the fine-grained (distal) tephras of the upper 1320 m, but the coarse-grained (proximal) volcaniclastics in the lowest 25% of the section are geochemically similar to the arc front, suggesting arc asymmetry is not recorded in rocks older than ~13 Ma.  相似文献   
40.
Massive sulfides recovered from the Kebrit Deep carbonaceous sedimentary succession represent black smoker fragments, novel to any Red Sea brine pool deposit. Chimneys, which were also observed in situ near the seawater/brine interface of the Kebrit Deep pool, are primarily comprised of Fe-, Zn- and Pb-bearing phases, and are often tar and asphalt impregnated. Cu-sulfides are virtually absent from parageneses, contrasting rift-related smoker and Red Sea metalliferous sediment deposits. Concentration of nickel in discrete bravoite points to a basalt/seawater leaching process as a source for most metals. The sedimentary package, which probably hosts Cu-mineralization in lower stockworks of the smoker deposit, is considered the major source of lead. Prevention of boiling of hydrothermal fluids, passing through a succession of organic-rich carbonate and clay horizons prior to discharge, is essential for smoker formation. Shaban Deep sedimentary-hosted massive sulfides are less frequent, with pyrite being the dominant ore mineral. Sulfur isotope data indicate both high temperature inorganic as well as biogenic sulfate (seawater and/or evaporite) reduction in sulfide-forming processes. Cogenetic sulfates formed from residual, bacteriogenically reduced seawater sulfate. Rather low sulfide/sulfate precipitation temperatures of 110–130 °C for the Kebrit brine pool and 100 °C for Shaban Deep massive sulfides are evident.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号