首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   6篇
  国内免费   1篇
测绘学   5篇
大气科学   12篇
地球物理   44篇
地质学   64篇
海洋学   15篇
天文学   45篇
自然地理   15篇
  2021年   4篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2014年   9篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   12篇
  2008年   11篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1992年   2篇
  1990年   3篇
  1989年   2篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1900年   2篇
  1899年   2篇
  1898年   1篇
  1895年   1篇
  1892年   6篇
  1889年   1篇
  1885年   1篇
  1880年   1篇
  1877年   1篇
排序方式: 共有200条查询结果,搜索用时 31 毫秒
81.
Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi River locations, in 2007-2008. The range of CDOM was 0.092 m−1 at Barataria in June 2008 to 11.225 m−1 at Mississippi in February 2008. An indicator of organic matter quality was predicted by the spectral slope of absorption coefficients from 350 to 412 nm which was between 0.0087 m−1 at Mississippi in May 2008 and 0.0261 m−1 at Barataria in June 2008. CDOM was the dominant component of light attenuation at Terrebonne and Barataria. Detritus and CDOM were the primary components of light attenuation at Vermilion, Atchafalaya, and Mississippi. DOC ranged between 65 and 1235 μM. PIM ranged between 1.1 and 426.3 mg L−1 and POM was between 0.3 and 49.6 mg L−1.  相似文献   
82.
83.
84.
The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying  ∼1000 deg2  of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect  ≳100 000  SNe Ia up to   z ∼ 1  . This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.  相似文献   
85.
The surface of Venus viewed in Arecibo radar images has a small population of bright ring-shaped features. These features are interpreted as the rough or blocky deposits surrounding craters of impact or volcanic origin. Population densities of these bright ring features are small compared with visually identified impact craters on the surface of the Moon and volcanic craters on Io. However, they are comparable to the short-lived radar-bright haloes associated with ejecta deposits of young craters on the Moon. This suggests that bright radar signatures of the deposits around Venusian craters are obliterated by an erosional or sedimentary process. We have evaluated the hypothesis that bright radar crater signatures were obliterated by a global mantle deposited after impacts of very large bolides. The mechanism accounts satisfactorily for the population of features with internal diameters greater than 64 km. The measured population of craters with internal diameters between 32 and 64 km is difficult to account for with the model but it may be underestimated because of poor radar resolution (5 to 20 km). Other possible mechanisms for the removal of radar bright crater signatures include in situ chemical weathering of rocks and mantling by young volcanic deposits. All three alternatives may be consistent with existing radar roughness and cross-section data and Venera 8, 9, and 10 data. However, imaging observations from a lander on the rolling plains or lowlands may verify or disprove the proposed global mantling. New high-resolution ground-based radar data can also contribute new information on the nature and origin of these radar bright ring features.  相似文献   
86.
All modes of surface transportation can be disrupted by visibility degradation caused by airborne volcanic ash. Despite much qualitative evidence of low visibility on roads following historical eruptions worldwide, there have been few detailed studies that have attempted to quantify relationships between visibility conditions and observed impacts on network functionality and safety. In the absence of detailed field observations, such gaps in knowledge can be filled by developing empirical datasets through laboratory investigations. Here, we use historical eruption data to estimate a plausible range of ash-settling rates and ash particle characteristics for Auckland city, New Zealand. We propose and implement a new experimental set-up in controlled laboratory conditions, which incorporates a dual-pass transmissometer and solid aerosol generator, to reproduce these ash-settling rates and calculate visual ranges through the associated airborne volcanic ash. Our findings demonstrate that visibility is most impaired for high ash-settling rates (i.e. > 500 g m?2 h?1) and particle size is deemed the most influential ash characteristic for visual range. For the samples tested (all < 320 μm particle diameter), visibility was restricted to ~ 1–2 m when ash settling was replicated for very high rates (i.e. ~ 4000 g m?2 h?1) and was especially low when ash particles were fine-grained, more irregular in shape and lighter in colour. Finally, we consider potential implications for disruption to surface transportation in Auckland through comparisons with existing research which investigates the consequences of visual range reduction for other atmospheric hazards such as fog. This includes discussing how our approach might be utilised in emergency and transport management planning. Finally, we summarise strategies available for the mitigation of visibility degradation in environments contaminated with volcanic ash.  相似文献   
87.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   
88.
The presence of granitoid clasts in Devonian sequences of the Mt Morgan area has been considered indicative of a Late Devonian age, with the clasts derived from the Middle Devonian (377 Ma) Mt Morgan Trondhjemite. However, a sequence of limestone and volcanolithic arenites and breccias containing Middle Devonian corals and conodonts, overlies a granitoid‐bearing conglomerate in Station Creek. This sequence, previously mapped as Dee Volcanics, is now assigned to the Raspberry Creek Formation of the Capella Creek Group. Petrographic and geochemical similarities between the granitoid clasts and phases of the Mt Morgan Trondhjemite indicate formation in similar tectonic environments by similar magmatic processes. These clasts were derived from either an earlier phase of Mt Morgan Trondhjemite magmatism, or from a discrete earlier magmatic episode of similar type and inferred tectonic setting to the Mt Morgan intrusion.  相似文献   
89.
Fault blocks and inliers of uppermost Silurian to Middle Devonian strata in the Yarrol Province of central coastal Queensland have been interpreted either as island-arc deposits or as a continental-margin sequence. They can be grouped into four assemblages with different age ranges, stratigraphic successions, geophysical signatures, basalt geochemistry, and coral faunas. Basalt compositions from the Middle Devonian Capella Creek Group at Mt Morgan are remarkably similar to analyses from the modern Kermadec Arc, and are most consistent with an intra-oceanic arc associated with a backarc basin. They cannot be matched with basalts from any modern continental arc, including those with a thin crust (Southern Volcanic Zone of the Andes) or those built on recently accreted juvenile oceanic terranes (Eastern Volcanic Front of Kamchatka). Analyses from the other assemblages also suggest island-arc settings, although some backarc basin basalt compositions could be present. Arguments for a continental-margin setting based on structure, provenance, and palaeogeography are not conclusive, and none excludes an oceanic setting for the uppermost Silurian to Middle Devonian rocks. The Mt Morgan gold–copper orebody is associated with a felsic volcanic centre like those of the modern Izu–Bonin Arc, and may have formed within a submarine caldera. The data are most consistent with formation of the Capella Creek Group as an intra-oceanic arc related to an east-dipping subduction zone, with outboard assemblages to the east representing remnant arc or backarc basin sequences. Collision of these exotic terranes with the continent probably coincided with the Middle–Upper Devonian unconformity at Mt Morgan. An Upper Devonian overlap sequence indicates that all four assemblages had reached essentially their present relative positions early in Late Devonian time. Apart from a small number of samples with compositions typical of spreading backarc basins, Upper Devonian basalts and basaltic andesites of the Lochenbar and Mt Hoopbound Formations and the Three Moon Conglomerate are most like tholeiitic or transitional suites from evolved oceanic arcs such as the Lesser Antilles, Marianas, Vanuatu, and the Aleutians. However, they also match some samples from the Eastern Volcanic Front of Kamchatka. Their rare-earth and high field strength element patterns are also remarkably similar to Upper Devonian island arc tholeiites in the ophiolitic Marlborough terrane, supporting a subduction-related origin and a lack of involvement of continental crust in their genesis. Modern basalts from rifted backarc basins do not match the Yarrol Province rocks as well as those from evolved oceanic arcs, and commonly have consistently higher MgO contents at equivalent levels of rare-earth and high field strength elements. One of the most significant points for any tectonic model is that the Upper Devonian basalts become more arc-like from east to west, with all samples that can be matched most readily with backarc basin basalts located along the eastern edge of the outcrop belt. It is difficult to account for all geochemical variations in the Upper Devonian basalts of the Yarrol Province by any simplistic tectonic model using either a west-dipping or an east-dipping subduction zone. On a regional scale, the Upper Devonian rocks represent a transitional phase in the change from an intra-oceanic setting, epitomised by the Middle Devonian Capella Creek Group, to a continental margin setting in the northern New England Orogen in the Carboniferous, but the tectonic evolution must have been more complex than any of the models published to date. Certainly there are many similarities to the southern New England Orogen, where basalt geochemistry indicates rifting of an intra-oceanic arc in Middle to Late Devonian time.  相似文献   
90.
The Hyperspectral Imager for the Coastal Ocean (HICO) was used to derive chlorophyll-a (chl-a) based on the normalized difference chlorophyll index (NDCI) in two Gulf of Mexico coastal estuaries. Chl-a data were acquired from discrete in situ water sample analysis and above-water hyperspectral surface acquisition system (HyperSAS) remote sensing reflectance in Pensacola Bay (PB) and Choctawhatchee Bay (CB). NDCI algorithm calibrations and validations were completed on HICO data. Linear and best-fit (polynomial) calibrations performed strongly with R2 of 0.90 and 0.96, respectively. The best validation of NDCI resulted with an R2 of 0.74 and root-mean-square error (RMSE) of 1.64 µg/L. A strong spatial correspondence was observed between NDCI and chl-a, with higher NDCI associated with higher chl-a and these areas were primarily located in the northern PB and eastern CB at the river mouths. NDCI could be effectively used as a qualitative chl-a monitoring tool with a reduced need for site-specific calibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号