首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   10篇
  国内免费   3篇
测绘学   4篇
大气科学   12篇
地球物理   71篇
地质学   62篇
海洋学   23篇
天文学   41篇
自然地理   13篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   10篇
  2016年   7篇
  2015年   7篇
  2014年   13篇
  2013年   11篇
  2012年   11篇
  2011年   20篇
  2010年   13篇
  2009年   17篇
  2008年   10篇
  2007年   11篇
  2006年   13篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1993年   3篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
221.
Direct traces of past sea levels are based on the elevation of old coral reefs at times of sea level highstands. However, these measurements are discontinuous and cannot be easily correlated with climate records from ice cores. In this study we show a new approach to recognizing the imprint of sea level changes in continuous sediment records taken from the continental slope at locations that were continuously submerged, even during periods of sea level lowstand. By using a sediment core precisely synchronized with Greenland ice cores, we were able to recognize major floods of the Mediterranean continental shelf over the past 270 kyr. During the last glacial period five flooding events were observed at the onset of the warmest Greenland interstadials. Consistent correspondence between warm climate episodes and eustatic sea level rises shows that these global flooding events were generated by pronounced melting of the Northern Hemisphere ice sheets, due to rapid intensification of Atlantic Meridional Overturning Circulation.The method described in this study opens a new perspective for inter-hemispheric synchronization of marine climate records if applied in other continental margins from the Southern Hemisphere or the equatorial regions.  相似文献   
222.
223.
Data analyzed in the present work correspond to a 40 days field experiment carried out in Teide Volcano (Canary Islands, Spain) with two short-period small-aperture dense seismic antennas in 1994. The objective of this experiment was to detect, analyze and locate the local seismicity. We analyzed also the background seismic noise to investigate the possible presence of volcanic tremor. From a set of 76 events, we selected 21 of them in base of their good signal-to-noise ratio and their possibility to locate their seismic source by using the seismic antennas. A visual classification based on the S–P time and seismogram shape has permitted to establish three groups of events: local seismicity (S–P time between 3 and 5 s), very local earthquakes (S–P time smaller than 3 s) and artificial explosions. These earthquakes have been located by applying the Zero Lag Cross-Correlation technique and the inverse ray-tracing procedure. Those earthquakes that were recorded simultaneously by both seismic antennas were also located by intersecting both back-azimuths. The analysis of the seismicity has revealed that the amount of seismicity in Teide Volcano is moderate. This seismicity could be distributed in three main areas: inside the Caldera Edifice (below the Teide–Pico Viejo complex), in the eastern border of the Caldera Edifice and offshore of the island. At present, this activity is the only indicator of the volcano dynamics. The analysis of the back-ground seismic noise has revealed that at frequencies lower than 2 Hz, the Oceanic Load signal is predominant over other signals, even over local earthquakes with a magnitude of 2.0. Due to this, although if in the Teide area were present a weak volcanic tremor, or other volcanic signals with predominant peaks below 2 Hz, to observe them would be a very difficult task.  相似文献   
224.
The high-K Tuzgle volcanic center, (24° S, 66.5° W) along with several small shoshonitic centers, developed along extensional Quaternary faults of the El Toro lineament on the east-central Puna plateau, 275 km east of the main front of the Andean Central Volcanic Zone (CVZ). These magmas formed by complex mixing processes in the mantle and thickened crust (>50 km) above a 200 km deep scismic zone. Tuzgle magmas are differentiated from shoshonitic series magmas by their more intraplate-like Ti group element characteristics, lower incompatible element concentrations, and lower 87Sr/86Sr ratios at a given Nd. Underlying Mio-Pliocene volcanic rocks erupted in a compressional stress regime and have back-arc like calc-alkaline chemical characteristics. The Tuzgle rocks can be divided into two sequences with different mantle precursors: a) an older, more voluminous rhyodacitic (ignimbrite) to mafic andestitic (56% to 71% SiO2) sequence with La/Yb ratios <30, and b) a younger andesitic sequence with La/Yb ratios >35. La/Yb ratios are controlled by the mafic components: low ratios result from larger mantle melt percentages than high ratios. Shoshonitic series lavas (52% to 62% SiO2) contain small percentage melts of more isotopically enriched arc-like mantle sources. Some young Tuzgle lavas have a shoshonitic-like component. Variable thermal conditions and complex stress system are required to produce the Tuzgle and shoshonitic series magmas in the same vicinity. These conditions are consistent with the underlying mantle being in transition from the thick mantle lithosphere which produced rare shoshonitic flows in the Altiplano to the thinner mantle lithosphere that produced back-are calc-alkaline and intraplate-type flows in the southern Puna. Substantial upper crustal type contamination in Tuzgle lavas is indicated by decreasing Nd (-2.5 to-6.7) with increasing 87Sr/86Sr (0.7063 to 0.7099) ratios and SiO2 concentrations, and by negative Eu anomalies (Eu/Eu* <0.78) in lavas that lack plagioclase phenocrysts. Trace element arguments indicate that the bulk contaminant was more silicic than the Tuzgle ignimbrite and left a residue with a high pressure mineralogy. Crustal shortening processes transported upper crustal contaminants to depths where melting occurred. These contaminants mixed with mafic magmas that were fractionating mafic phases at high pressure. Silicic melts formed at depth by these processes accumulated at a mid to upper crustal discontinuity (decollement). The Tuzgle ignimbrite erupted from this level when melting rates were highest. Subsequent lavas are mixtures of contaminated mafic magmas and ponded silicic melts. Feldspar and quartz phenocrysts in the lavas are phenocrysts from the ponded silicic magmas.  相似文献   
225.
Products of the gas-phase reaction of the NO3 radical with thiophene have been investigated using different experimental systems. On the one hand, experiments have been conducted in our laboratory using two different methods, a Teflon static reactor coupled to a gas chromatograph combined with mass-spectrometry (GC-MS) and a discharge flow tube with direct MS spectroscopic detection. A qualitative analysis in these cases indicates that possible products for the reaction of thiophene+NO3 at room temperature include: sulphur dioxide, acetic and formic acids, a short-chain aldehyde, 2-nitrothiophene and 3-nitrothiophene. On the other hand, quantitative experiments have been performed in the European Photoreactor (EUPHORE) in Valencia, Spain. In this case, the major products were: HNO3 (≈80%), nitrothiophenes (≈30%), SO2 (≈20%), propanal (3%) and a fraction of particles (≈10%). The results obtained indicate that at least 70% of the reaction of NO3 with thiophene proceeds by an H-abstraction process at room temperature. The mechanism of the reaction studied is proposed on the basis of experimental results.  相似文献   
226.
This paper presents new magnetostratigraphic results from a 1100‐m‐thick composite section across the marine to continental sediments of the central part of the SE margin of the Ebro basin (NE Spain). Integration with existing marine and continental biochronological data allows a robust correlation with the geomagnetic polarity time scale. The resulting absolute chronology ranges from 36.3 to 31.1 Ma (Priabonian to Rupelian), and yields an interpolated age of ~36.0 Ma (within chron C16n.2n) for the youngest marine sediments of the eastern Ebro basin. This age is in concordance with a reinterpretation of earlier magnetostratigraphic data from the western South Pyrenean foreland basin, and indicates that continentalization of the basin occurred as a rapid and isochronous event. The basin continentalization, determined by the seaway closure that resulted from the uplift of the western Pyrenees, was probably coincident with a mid‐amplitude eustatic sea level low with a maximum at 36.2 Ma. The base level drop that followed the basin closure and desiccation does not appear associated to a significant sedimentary hiatus along the margins, suggesting a late Eocene shallow marine basin that rapidly refilled and raised its base level after the seaway closing. Rapid basin filling following continentalization predates the phase of rapid exhumation of the Central Pyrenean Axial Zone from 35.0 to 32.0 Ma, determined from the thermochronology data. It is possible then that sediment aggradation at the front of the fold‐and‐thrust belt could have contributed to a decrease in the taper angle, triggering growth of the inner orogenic wedge through break‐back thrusting and underplating. Contrasting sedimentation trends between the western and eastern sectors of the South Pyrenean foreland indicate that basin closing preferentially affected those areas subjected to sediment bypass towards the ocean domain. As a result, sediment ponding after basin closure is responsible for a two‐fold increase of sedimentation rates in the western sector, while changes of sedimentation rates are undetected in the more restricted scenario of the eastern Ebro basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号