首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   17篇
测绘学   2篇
大气科学   5篇
地球物理   39篇
地质学   26篇
海洋学   2篇
天文学   7篇
自然地理   5篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   10篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   7篇
  2015年   7篇
  2014年   9篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2006年   2篇
  2004年   3篇
  1994年   2篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
21.
Flood occurrence has always been one of the most important natural phenomena, which is often associated with disaster. Consequently, flood forecasting (FF) and flood warning (FW) systems, as the most efficient non-structural measures in reducing flood loss and damage, are of prime importance. These systems are low cost and the time required for their implementation is relatively short. It is emphasized that for designing the components of these systems for various rivers, climatic conditions and geographical settings different methods are required. One of the major difficulties during implementing these systems in different projects is the fact that sometimes the main functions of these systems are ignored. Based on a systematic and practical approach and considering the components of these systems, it would be possible to extract the most essential key functions of the system and save time, effort and money by this way. For instance, in a small watershed with low concentration and small lead time, the main emphasis should be on predicting and monitoring weather conditions. In this article, different components of flood forecasting and flood warning systems have been introduced. Then analysis of the FF and FW system functions has been undertaken based on the value engineering (VE) technique. Utilizing a functional view based on function analysis system technique (FAST), the total trend of FF and FW functions has been identified. The systematic trend and holistic view of this technique have been used in optimizing FF and FW systems of the Golestan province and Golabdare watersheds in Iran as the case studies.  相似文献   
22.
Natural Hazards - In March 2019, the Iranian meteorological organization warned of the formation of several dense precipitation systems throughout the country. This was followed by a chain of storm...  相似文献   
23.
In the very early hours of 26th December 2003, a devastating and strong earthquake with a magnitude of 6.5 struck Bam, one of the historical cities of Kerman province in the south of Iran. According to the official reports, more than 30,000 were killed and about 25,000 injured. More than 80% of the town’s buildings were also destroyed. After the disaster, Bam’s reconstruction management process was presented with a lot of challenges and faced many fundamental questions. The number of human losses and related social issues, extensive destruction of the historical town, and also the lack of good experience in the reconstruction of a city or town made the reconstruction project of Bam more complicated. The reconstruction of Bam was the most important post-disaster reconstruction project among recent reconstructions in Iran. Many factors, such as concern over the government and international agencies, the new managerial approaches, and the application of appropriate reconstruction methods, made it different from the other reconstruction programs. Thus, the post-earthquake reconstruction of Bam is investigated in this research with respect to the importance of this issue. The aim behind this article is to give a brief explanation of the earthquake reconstruction management policies in Bam and also the plans for the reconstruction and rebuilding of urban residential and commercial units.  相似文献   
24.
Near‐fault ground motions with forward directivity are characterized by a large pulse. This pulse‐like motion may cause a highly non‐uniform distribution of story ductility demands for code‐compliant frame structures, with maximum demands that may considerably exceed the level of code expectations. Strengthening techniques for multi‐story frame structures are explored with the objective of reducing maximum drift demands. One option is to modify the code‐based SRSS distribution of story shear strength over the height by strengthening of the lower stories of the frame. The modified distribution reduces the maximum story ductility demand, particularly for weak and flexible structures. However, this strengthening technique is less effective for stiff structures, and is almost ineffective in cases in which the maximum demand occurs in the upper stories, i.e. strong and flexible structures. As an alternative, the benefits of strengthening frames with elastic and inelastic walls are evaluated. The effects of adding walls that are either fixed or hinged at the base are investigated. It is demonstrated that strengthening with hinged walls is very effective in reducing drift demands for structures with a wide range of periods and at various performance levels. Wall inelastic behavior only slightly reduces the benefits of strengthening with hinged walls.Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
25.
The aim of Land-use Suitability Analysis and Planning Problem (LSAPP) is to identify the most suitable parcels of land for future land-uses considering several conflicting criteria. LSAPP can be modeled using a variant of a well-known combinatorial optimization problem called Quadratic Assignment Problem (QAP). In this paper, a multi-objective mathematical model is developed for LSAPP based on QAP modeling. The large-size instances of the proposed multi-objective mathematical model are difficult to solve in a reasonable CPU time using exact algorithms. So, an efficient three-phase hybrid solution procedure is proposed. In the first phase, the compensatory objectives are integrated using Analytic Hierarchy Process (AHP) and Decision-Making Trial and Evaluation Laboratory. Then, based on the aforementioned suitability objective function and other spatial objectives and constraints, a multi-objective LSAPP is constructed. Finally, a hybrid multiple objective meta-heuristic algorithm is proposed to solve the LSAPP. The core of the proposed algorithm is based on Scatter Search while Tabu Search and Variable Neighborhood Search are also utilized. The proposed algorithm is equipped with the concepts of Pareto optimality and Veto Threshold, which improve its efficacy. The proposed algorithm is applied on a real LSAPP case study, in ‘Persian Gulf Knowledge Village’, wherein its performance is compared with a well-known evolutionary computation algorithm called Vector Evaluated Genetic Algorithm (VEGA) using comprehensive statistical analysis. A survey on time complexity of the proposed algorithm is also accomplished. The results show that MOSVNS is significantly superior to VEGA both in single and in multi-objective modes. Furthermore, analysis of time complexity of the proposed algorithm shows that it is of polynomial time and can be applied to significantly larger problems with multiple compensatory and non-compensatory objectives.  相似文献   
26.
Spatial differences of Quaternary deformation and intensity of tectonic activity are assessed through a detailed quantitative geomorphic study of the fault‐generated mountain fronts and alluvial/fluvial systems around the Maharlou Lake Basin in the Zagros Fold–Thrust Belt of Iran. The Maharlou Lake Basin is defined as an approximately northwest–southeast trending, linear, topographic depression located in the central Zagros Mountains of Iran. The lake is located in a tectonically active area delineated by the Ghareh and Maharlou faults. Combined geomorphic and morphometric data reveal differences between the Ghareh and Maharlou mountain front faults indicating different levels of tectonic activity along each mountain front. Geomorphic indices show a relatively high degree of tectonic activity along the Ghareh Mountain Front in the southwest, in contrast with less tectonic activity along the Ahmadi Mountain Front northeast of the lake which is consistent with field evidence and seismotectonic data for the study area. A ramp valley tectonic setting is proposed to explain the tectonosedimentary evolution of the lake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
27.
A full‐scale five‐story reinforced concrete building was built and tested on the NEES‐UCSD shake table during the period from May 2011 to May 2012. The purpose of this test program was to study the response of the structure and nonstructural components and systems (NCSs) and their dynamic interaction during seismic base excitation of different intensities. The building specimen was tested first under a base‐isolated condition and then under a fixed‐based condition. As the building was being erected, an accelerometer array was deployed on the specimen to study the evolution of its modal parameters during the construction process and placement of major NCSs. A sequence of dynamic tests, including daily ambient vibration, shock (free vibration) and forced vibration tests (low‐amplitude white noise and seismic base excitations), were performed on the building at different stages of construction. Different state‐of‐the‐art system identification methods, including three output‐only and two input‐output methods, were used to estimate the modal properties of the building. The obtained results allow to investigate in detail the effects of the construction process and NCSs on the dynamic parameters of this building system and to compare the modal properties obtained from different methods, as well as the performance of these methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
28.
Interferometric identification and health monitoring of high‐rise buildings has been gaining increasing interest in recent years. The wave dispersion in the structure has been largely ignored in these efforts but needs to be considered to further develop these methods. In this paper, (i) the goodness of estimation of vertical wave velocity in buildings, as function of frequency, by two nonparametric interferometric techniques is examined, using realistic fixed‐base Timoshenko beam benchmark models. Such models are convenient because the variation of phase and group velocities with frequency can be derived theoretically. The models are those of the NS and EW responses of Millikan Library. One of the techniques, deconvolution interferometry, estimates the phase velocity on a frequency band from phase difference between motions at two locations in the structure, while the other one estimates it approximately at the resonant frequencies based on standing wave patterns. The paper also (ii) examines the modeling error in wave velocity profiles identified by fitting layered shear beam in broader band impulse response functions of buildings with significant bending flexibility. This error may affect inferences on the spatial distribution of damage from detected changes in such velocity profiles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
29.
Ground velocity records of the 20 May 2016 Petermann Ranges earthquake are used to calculate its centroid-moment-tensor in the 3?D heterogeneous Earth model AuSREM. The global-centroid-moment-tensor reported a depth of 12?km, which is the shallowest allowed depth in the algorithm. Solutions from other global and local agencies indicate that the event occurred within the top 12?km of the crust, but the locations vary laterally by up to 100?km. We perform a centroid-moment-tensor inversion through a spatiotemporal grid search in 3?D allowing for time shifts around the origin time. Our 3?D grid encompasses the locations of all proposed global solutions. The inversion produces an ensemble of solutions that constrain the depth, lateral location of the centroid, and strike, dip and rake of the fault. The centroid location stands out with a clear peak in the correlation between real and synthetic data for a depth of 1?km at longitude 129.8° and latitude –25.6°. A collection of acceptable solutions at this centroid location, produced by different time shifts, constrain the fault strike to be 304?±?4° or 138?±?1°. The two nodal planes have dip angles of 64?±?5° and 26?±?4° and rake angles of 96?±?2° and 77?±?5°, respectively. The southwest-dipping nodal plane with the dip angle of 64° could be seen as part of a near vertical splay fault system at the end of the Woodroffe Thrust. The other nodal plane could be interpreted as a conjugate fault rupturing perpendicular to the splay structure. We speculate that the latter is more likely, since the hypocentres reported by several agencies, including the Geoscience Australia, as well as the majority of aftershocks are all located to the northeast of our preferred centroid location. Our best estimate for the moment magnitude of this event is 5.9. The optimum centroid is located on the 20?km surface rupture caused by the earthquake. Given the estimated magnitude, the long surface rupture requires only ~4?km of rupture down dip, which is in agreement with the shallow centroid depth we obtained.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号