首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   14篇
  国内免费   1篇
测绘学   2篇
大气科学   5篇
地球物理   39篇
地质学   27篇
海洋学   2篇
天文学   7篇
自然地理   5篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   10篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   7篇
  2015年   7篇
  2014年   9篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2006年   2篇
  2004年   3篇
  1994年   2篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
An important task in modern geostatistics is the assessment and quantification of resource and reserve uncertainty. This uncertainty is valuable support information for many management decisions. Uncertainty at specific locations and uncertainty in the global resource is of interest. There are many different methods to build models of uncertainty, including Kriging, Cokriging, and Inverse Distance. Each method leads to different results. A method is proposed to combine local uncertainties predicted by different models to obtain a combined measure of uncertainty that combines good features of each alternative. The new estimator is the overlap of alternate conditional distributions.  相似文献   
2.
ABSTRACT

Accurate runoff forecasting plays a key role in catchment water management and water resources system planning. To improve the prediction accuracy, one needs to strive to develop a reliable and accurate forecasting model for streamflow. In this study, the novel combination of the adaptive neuro-fuzzy inference system (ANFIS) model with the shuffled frog-leaping algorithm (SFLA) is proposed. Historical streamflow data of two different rivers were collected to examine the performance of the proposed model. To evaluate the performance of the proposed ANFIS-SFLA model, six different scenarios for the model input–output architecture were investigated. The results show that the proposed ANFIS-SFLA model (R2 = 0.88; NS = 0.88; RMSE = 142.30 (m3/s); MAE = 88.94 (m3/s); MAPE = 35.19%) significantly improved the forecasting accuracy and outperformed the classic ANFIS model (R2 = 0.83; NS = 0.83; RMSE = 167.81; MAE = 115.83 (m3/s); MAPE = 45.97%). The proposed model could be generalized and applied in different rivers worldwide.  相似文献   
3.
4.
5.
In the midst of the ever-increasing natural and human-induced disasters, where many of the preparedness and mitigation measures show inefficiencies, there is narrow margin for decision-makers to make mistakes by misallocating budgets, designing infeasible reconstruction plans, and in other terms, making decisions not in line with the public preferences. In particular, public participation in post-disaster measures seems undoubtedly necessary to reduce the possible economic, social, political, and cultural conflicts around the stressful community after a major disaster. This paper aims at evaluating the role of public participation in increasing the reconstruction phase efficiency through a case study of the reconstruction process in Bam, a southeastern Iranian city, after the 2003 earthquake. It is attempted to identify the major motivators of the public participation through a combination of quantitative and qualitative studies. Statistical data are generated through a set of questionnaires being filled by a number of 200 randomly selected survivors. The numerical results were then discussed through the Focus Group technique sessions to determine the main contributors to the public participation. It is later found that the answers are found among the performance of the reconstruction authorities, financial policies, emotional resiliency of the survivors, public information mechanisms, public satisfaction, the pace of reconstruction, and temporary housing policies.  相似文献   
6.
Theoretical and Applied Climatology - Investigation of the impact of climate change on water resources is very necessary in dry and arid regions. In the first part of this paper, the climate model...  相似文献   
7.
Effective impervious area for runoff in urban watersheds   总被引:2,自引:0,他引:2       下载免费PDF全文
Effective impervious area (EIA), or the portion of total impervious area (TIA) that is hydraulically connected to the storm sewer system, is an important parameter in determining actual urban runoff. EIA has implications in watershed hydrology, water quality, environment, and ecosystem services. The overall goal of this study is to evaluate the application of successive weighted least square (WLS) method to urban catchments with different sizes and various hydrologic conditions to determine EIA fraction. Other objectives are to develop insights on the data selection issues, EIA fraction, EIA/TIA ratio, and runoff source area patterns in urban catchments. The successive WLS method is applied to 50 urban catchments with different sizes from less than 1 ha to more than 2000 ha in Minnesota, Wisconsin, Texas, USA as well as Europe, Canada, and Australia. The average, median, and standard deviation of EIA fractions for the 42 catchments with residential land uses are found to be 0.222, 0.200, and 0.113, respectively. These values for the EIA/TIA ratio in the same 42 catchments are 0.50, 0.48, and 0.21, respectively. While the EIA/TIA results indicate the importance of EIA, 95% prediction interval of the mean EIA/TIA is found to be 0.07 to 0.93, which shows that using an average value for this ratio in each land use to determine EIA from TIA in ungauged urban watersheds can be misleading. The successive WLS method was robust and is recommended for determining EIA in gauged urban catchments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
Modelling uncertainty can significantly affect the structural seismic reliability assessment. However, the limit state excursion due to this type of uncertainty may not be described by a Poisson process as it lacks renewal properties with the occurrence of each earthquake event. Furthermore, considering uncertainties related to ground motion representation by employing recorded ground motions together with modelling uncertainties is not a trivial task. Robust fragility assessment, proposed previously by the authors, employs the structural response to recorded ground motion as data in order to update prescribed seismic fragility models. Robust fragility can be extremely efficient for considering also the structural modelling uncertainties by creating a dataset of one-to-one assignments of structural model realizations and as-recorded ground motions. This can reduce the computational effort by more than 1 order of magnitude. However, it should be kept in mind that the fragility concept itself is based on the underlying assumption of Poisson-type renewal. Using the concept of updated robust reliability, considering both the uncertainty in ground motion representation based on as-recorded ground motion and non ergodic modelling uncertainties, the error introduced through structural reliability assessment by using the robust fragility is quantified. It is shown through specific application to an existing RC frame that this error is quite small when the product of the time interval and the standard deviation of failure rate is small and is on the conservative side.  相似文献   
9.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   
10.
Gravitational lensing of a background source by a foreground galaxy lens occasionally produces four images of the source. The cusp and the fold relations impose conditions on the ratios of magnifications of these four-image lenses. In this theoretical investigation, we explore the sensitivity of these relations to the presence of substructure in the lens. Starting with a smooth lens potential, we add varying amounts of substructure, while keeping the source position fixed, and find that the fold relation is a more robust indicator of substructure than the cusp relation for the images. This robustness is independent of the detailed spatial distribution of the substructure, as well as of the ellipticity of the lensing potential and the presence of external shear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号