首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   8篇
  国内免费   7篇
测绘学   27篇
大气科学   49篇
地球物理   88篇
地质学   140篇
海洋学   34篇
天文学   43篇
综合类   1篇
自然地理   27篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   14篇
  2017年   23篇
  2016年   26篇
  2015年   11篇
  2014年   16篇
  2013年   33篇
  2012年   17篇
  2011年   11篇
  2010年   5篇
  2009年   15篇
  2008年   15篇
  2007年   16篇
  2006年   14篇
  2005年   13篇
  2004年   14篇
  2003年   2篇
  2002年   6篇
  2001年   4篇
  2000年   12篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1978年   3篇
  1973年   4篇
  1971年   2篇
  1969年   5篇
  1967年   2篇
  1965年   1篇
  1964年   2篇
排序方式: 共有409条查询结果,搜索用时 0 毫秒
1.
Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the area in four tectonic blocks. Each tectonic block is characterized by association of fluvial anomalies viz. compressed meanders, knick point in longitudinal profiles, channel incision, anomalous sinuosity variations, sudden change in river flow direction, river flow against the local gradient and distribution of overbank flooding, lakes, and waterlogged area. Such fluvial anomalies have been identified on the repetitive satellite images and maps and interpreted through DEM and field observations to understand the nature of vertical movements in the area. The sub-surface faults in the Baghmati plains cut across the river channel and also run parallel which have allowed us to observe the effects of longitudinal and lateral tilting manifested in avulsions and morphological changes.  相似文献   
2.
The circulation and salinity distribution in the Hooghly Estuary have been studied by developing a two‐dimensional depth‐averaged numerical model for the lower estuary, where the flow is vertically well mixed. This has been coupled with a one‐dimensional model for the upper estuary, where the flow is assumed to be unidirectional and well mixed over the depth and breadth. The Hooghly River receives high freshwater discharge during the monsoon season (June to September), which has significant effect on the salinity distribution in the estuary. The model‐simulated currents, elevations, and salinities are in good agreement with observations during the dry season. However, during the wet season the computed salinities seem to deviate slightly from the observed values.  相似文献   
3.
4.
5.
6.
Water and nutrient availability for crop production are critical issues in (semi)arid regions. Unsaturated-zone Cl tracer data and nutrient (NO3 and PO4) concentrations were used to quantify recharge rates using the Cl mass balance approach and nutrient availability in the Thar Desert, Rajasthan, India. Soil cores were collected in dune/interdune settings in the arid Thar Desert (near Jaisalmer) and in rain-fed (nonirrigated) and irrigated cropland in the semiarid desert margin (near Jaipur). Recharge rates were also simulated using unsaturated zone modeling. Recharge rates in sparsely vegetated dune/interdune settings in the Jaisalmer study area are 2.7–5.6 mm/year (2–3% of precipitation, 165 mm/year). In contrast, recharge rates in rain-fed agriculture in the Jaipur study area are 61–94 mm/year (10–16% of precipitation, 600 mm/year). Minimum recharge rates under current freshwater irrigated sites are 50–120 mm/year (8–20% of precipitation). Nitrate concentrations are low at most sites. Similarity in recharge rates based on SO4 with those based on Cl is attributed to a meteoric origin of SO4 and generally conservative chemical behavior in these sandy soils. Modeling results increased confidence in tracer-based recharge estimates. Recharge rates under rain-fed agriculture indicate that irrigation of 20–40% of cultivated land with 300 mm/year should be sustainable.  相似文献   
7.
In this study, we examined the distribution of polycyclic aromatic hydrocarbons (PAHs) in a contaminated coastal area and the characteristics of the natural organic matter in tandem. We present a detailed study of PAH concentration, distribution, and organic matter characteristics of three core samples from Pensacola Bay, Florida. Solid-state 13C Nuclear Magnetic Resonance (NMR), pyrolysis gas chromatography coupled with mass spectrometry (GC-MS), and tetramethyl ammonium hydroxide (TMAH) thermochemolysis GC-MS were applied to obtain structural details about the sedimentary organic matter. Elemental compositions (carbon and nitrogen) and estimates of black carbon contents are also reported. These coastal sediments were found to contain more PAHs in the upper 15 cm layers than in the bottom 15-25 cm samples. The samples that contained the most PAHs also contained the least amount of aromatic carbon and contained a significant amount of paraffinic carbon. Lignin-derived pyrolysis and TMAH thermochemolysis products were abundant and generally higher in all of the samples in comparison to those reported for modern coastal sediments, indicating a large flux of terrestrial carbon. The black carbon contents were found to range from 4.3% to 6.8%, which are significantly lower than other reports of black carbon in sediments, which represent as much as 65% of the total organic carbon content. The low black carbon content suggests that this type of refractory carbon may not be as responsible for regulating PAH distribution as indicated by other researchers.  相似文献   
8.
Coastal inundation associated with extreme sea levels is the main factor which leads to the loss of life and property whenever a severe tropical cyclonic storm hits the Indian coasts. The Andhra and Orissa coasts are most vulnerable for coastal inundation due to extreme rise in sea levels associated with tropical cyclones. Loss of life may be minimized if extreme sea levels and associated coastal flooding is predicted well in advance. Keeping this in view, location specific coastal inundation models are developed and applied for the Andhra and Orissa coasts of India. Several numerical experiments are carried out using the data of past severe cyclones that struck these regions. The simulated inland inundation distances are found to be in general agreement with the reported flooding.  相似文献   
9.
The effects of the ocean coast on magnetotelluric (MT) data have been studied and results are described in this article. MT soundings from various sites along coastal plains of Kachchh were acquired where volcanic rocks overlie Mesozoic sediments having potential resource prospects. The region of our study lies in the proximity of Gulf of Kachchh and Arabian Sea. This article describes the effects the presence of a conductive body on the acquired MT data. With the help of synthetic MT modelling and induction arrows we demonstrate the influence of shallow conductive body on the MT data. The modelling results when compared to the field observations show that much of the high frequencies are unaffected by the coast, however low frequencies of the data do seem to be distorted by onshore–offshore resistivity contrasts. The least affect on high frequencies can be attributed to very shallow water depth as well as to the fact that the onshore–offshore resistivity contrasts are not large enough to influence the high frequency data badly. The results presented here report for the first time the effect of the coast on the analysis on MT data from Kachchh. Due to several academic as well as industrial onshore–offshore MT experiments presently being carried out to explore its hydrocarbon potential, our results have an important bearing on designing and acquisition of future MT surveys in this region.  相似文献   
10.
Sediment trap samples collected from the Western Arabian Sea yielded a rich assemblage of intact and non-living (opaque white) pteropod tests from a water depth of 919 m during January to September 1993. Nine species of pteropods were recorded, all (except one) displaying distinct seasonality in abundance, suggesting their response to changing hydrographical conditions influenced by the summer/winter monsoon cycle. Pteropod fluxes increased during the April–May peak of the intermonsoon, and reached maximum levels in the late phase of the southwest summer monsoon, probably due to the shallowing of the mixed layer depth. This shallowing, coupled with enhanced nutrient availability, provides ideal conditions for pteropod growth, also reflected in corresponding fluctuations in the flux of the foraminifer Globigerina bulloides. Pteropod/planktic foraminifer ratios displayed marked seasonal variations, the values increasing during the warmer months of April and May when planktic foraminiferal fluxes declined. The variation in fluxes of calcium carbonate, organic carbon and biogenic opal show positive correlations with fluxes of pteropods and planktic foraminifers. Calcium carbonate was the main contributor to the total particulate flux, especially during the SW monsoon. In the study area, pteropod flux variations are similar to the other flux patterns, indicating that they, too could be used as a potential tool for palaeoclimatic reconstruction of the recent past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号