首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   40篇
  国内免费   5篇
测绘学   41篇
大气科学   84篇
地球物理   218篇
地质学   341篇
海洋学   75篇
天文学   159篇
综合类   13篇
自然地理   113篇
  2022年   7篇
  2021年   13篇
  2020年   14篇
  2019年   22篇
  2018年   35篇
  2017年   20篇
  2016年   33篇
  2015年   23篇
  2014年   38篇
  2013年   74篇
  2012年   37篇
  2011年   44篇
  2010年   41篇
  2009年   63篇
  2008年   66篇
  2007年   50篇
  2006年   38篇
  2005年   35篇
  2004年   32篇
  2003年   39篇
  2002年   31篇
  2001年   27篇
  2000年   13篇
  1999年   17篇
  1998年   14篇
  1997年   14篇
  1996年   16篇
  1995年   12篇
  1994年   7篇
  1993年   10篇
  1992年   4篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   12篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   15篇
  1982年   12篇
  1981年   5篇
  1980年   11篇
  1979年   9篇
  1978年   5篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
  1972年   3篇
  1969年   3篇
排序方式: 共有1044条查询结果,搜索用时 15 毫秒
91.
A box model was constructed to investigate connections between the particulate MSA to non-sea-salt sulfate ratio, R, and DMS chemistry in a clean marine boundary layer. The simulations demonstrated that R varies widely with particle size, which must be taken into account when interpreting field measurements or comparing them with each other. In addition to DMS gas-phase chemistry, R in the submicron size range was shown to be sensitive to the factors dictating sulfate production via cloud processing, to the removal of SO2 from the boundary layer by dry deposition and sea-salt oxidation, to the entrainment of SO2 from the free troposphere, to the relative concentration of sub- and supermicron particles, and to meteorology. Three potential explanations for the increase of R toward high-latitudes during the summer were found: larger MSA yields from DMS oxidation at high latitudes, larger DMSO yields from DMS oxidation followed by the conversion of DMSO to MSA at high latitudes, or lower ambient H2O2 concentrations at high latitudes leading to less efficient sulfate production in clouds. Possible reasons for the large seasonal amplitude of R at mid and high latitudes include seasonal changes in the partitioning of DMS oxidation to the OH and NO3 initiated pathways, seasonal changes in the concentration of species participating the DMS-OH reaction pathway, or the existence of a SO2 source other than DMS oxidation in the marine boundary layer. Even small anthropogenic perturbations were shown to have a potential to alter the MSA to non-sea-salt sulfate ratio.  相似文献   
92.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   
93.
Textural variational pattern of economic and accessible Quaternary aquifer repositories and its conductivity in the south-eastern Nigeria have been assessed through the integration of vertical electrical sounding and laboratory measurements. The results have shown the lithological attributes, pore-water and amount of residual clay minerals in the assumed clean sand; mechanism of charge fixation at the fluid - surface interface; intricate geometry of pores and pore channels; formation’s ability to transmit pore-water and cation exchange capacity.The connections of electrical and hydraulic properties and their distributions have been established. The average interface conductivity contributed by residual clay minerals in assumed clean sands of the aquifer repositories in the study area have been estimated as 30µS/m. Intrinsic average porosity and formation factor have been respectively deduced as 12% and 14.75. Comparing the simulated aquifer formation factor obtained from the observed porosity data with the observed aquifer formation factor, indicates the that study area has 0.5 ≤ a ≤ 0.8 pore geometry factor and 1.5 ≤ m ≤ 2.0 cementation factor as the best fitting values. The interrelations between aquifer parameters have been established through different plots and the aquifer have been empirically proved to be associated with residual clay minerals as the interface conductivity Cq is not equal to zero. The wide ranges of parameters estimated are an indication of variations in grain size. The estimated intrinsic average porosity, formation factor and the average BQv are viable in characterizing the aquifer flow dynamics and contaminant modelling in the associated aquifer sands For low pore geometry factors a (0.2) and low cementation factor m (0.5) the formation factor remains fairly constant. However, marked variability is noticed at higher a (1.0) and m (2.5). Despite the observed variability in formation factors at the indicated porosities, the spatial or geometrical spread of the formation factor remains unchanged in the aquifer units. The Tables for geoelectric and petrophysical parameters and the associated mathematical models generated in this study can be used for groundwater contaminant modelling and simulation of pore space parameters with reasonable accuracy.  相似文献   
94.
95.
We have numerically integrated the orbits of ejecta from Telesto and Calypso, the two small Trojan companions of Saturn’s major satellite Tethys. Ejecta were launched with speeds comparable to or exceeding their parent’s escape velocity, consistent with impacts into regolith surfaces. We find that the fates of ejecta fall into several distinct categories, depending on both the speed and direction of launch.The slowest ejecta follow suborbital trajectories and re-impact their source moon in less than one day. Slightly faster debris barely escape their parent’s Hill sphere and are confined to tadpole orbits, librating about Tethys’ triangular Lagrange points L4 (leading, near Telesto) or L5 (trailing, near Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and Calypso. These ejecta too eventually re-impact their source moon, but with a median lifetime of a few dozen years. Those which re-impact within the first 10 years or so have lifetimes near integer multiples of 348.6 days (half the tadpole period).Still faster debris with azimuthal velocity components ?10 m/s enter horseshoe orbits which enclose both L4 and L5 as well as L3, but which avoid Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at comparable rates, with median lifetimes of several thousand years. However, they cannot reach Tethys itself; only the fastest ejecta, with azimuthal velocities ?40 m/s, achieve “passing orbits” which are able to encounter Tethys. Tethys accretes most of these ejecta within several years, but some 1% of them are scattered either inward to hit Enceladus or outward to strike Dione, over timescales on the order of a few hundred years.  相似文献   
96.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
97.
One of the most promising developments for early warning of climate hazards is seasonal climate forecasting. Already forecasts are operational in many parts of the tropics and sub-tropics, particularly for droughts and floods associated with ENSO events. Prospects for further development of seasonal forecasting for a range of climatichazards are reviewed, illustrated with case studies in Africa, Australia, the U.S.A. and Europe. A critical evaluation of the utility of seasonal forecasts centres on vulnerability, communicationchannels, and effective responses. In contrast to short-term prediction, seasonal forecasts raise new issues of preparedness and the use of information.  相似文献   
98.
Agricultural Census data is summarised over spatially coarse reporting units for reasons of farm confidentiality. This is problematic for research at a local level. This article describes an approach combining dasymetric and volume preserving techniques to create a national land use dataset at 1 km2 resolution. The results for an English county are compared with contemporaneous aggregated habitat data. The results show that the accurate estimates of local agricultural land use (Arable and Grass) patterns can be estimated when individual 1 km squares are combined into blocks of > 9 squares, thereby providing local estimates of agricultural land use. This in turn allows more detailed modelling of land uses related to specific livestock and cropping activities. The dataset created by this work has been subject to extensive external validation through its incorporation into a number of other national models: nitrate leaching (e.g. MAGPIE, NEAP‐N), waste, and pathogen modelling related to agricultural activity.  相似文献   
99.
Abstract

A computational method is developed where salinities inferred from mean salinity profiles (computed from all available data) are used to calculate 0/500 db dynamic height from temperature profiles. Using data from Ocean Weather Station P (50°N, 145°W), the method yielded a much smaller uncertainty in inferred 0/500 db dynamic height (~3 dyn cm) than that found using a mean temperature‐salinity relationship (~10 dyn cm). Applied to historical hydrographic data averaged over 5° squares in the North Pacific (north of 30°N), the method led to inferred dynamic‐height uncertainties typically less than 4 dyn cm in the region north of the Subarctic Front (~40°N). In this same region, dynamic heights inferred from mean temperature‐salinity curves had large uncertainties. South of the Subarctic Front, the dynamic‐height uncertainties associated with the temperature‐salinity curves were smaller than those computed with the mean salinity profiles. A combination of these two methods was used to compute inferred dynamic height from a climatology of temperature structure in the region from 30–50°N, 130°W‐150°E.  相似文献   
100.
Numerical models constitute the most advanced physical-based methods for modeling complex ground water systems. Spatial and/or temporal variability of aquifer parameters, boundary conditions, and initial conditions (for transient simulations) can be assigned across the numerical model domain. While this constitutes a powerful modeling advantage, it also presents the formidable challenge of overcoming parameter uncertainty, which, to date, has not been satisfactorily resolved, inevitably producing model prediction errors. In previous research, artificial neural networks (ANNs), developed with more accessible field data, have achieved excellent predictive accuracy over discrete stress periods at site-specific field locations in complex ground water systems. In an effort to combine the relative advantages of numerical models and ANNs, a new modeling paradigm is presented. The ANN models generate accurate predictions for a limited number of field locations. Appending them to a numerical model produces an overdetermined system of equations, which can be solved using a variety of mathematical techniques, potentially yielding more accurate numerical predictions. Mathematical theory and a simple two-dimensional example are presented to overview relevant mathematical and modeling issues. Two of the three methods for solving the overdetermined system achieved an overall improvement in numerical model accuracy for various levels of synthetic ANN errors using relatively few constrained head values (i.e., cells), which, while demonstrating promise, requires further research. This hybrid approach is not limited to ANN technology; it can be used with other approaches for improving numerical model predictions, such as regression or support vector machines (SVMs).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号