首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   32篇
  国内免费   5篇
测绘学   41篇
大气科学   84篇
地球物理   218篇
地质学   341篇
海洋学   75篇
天文学   159篇
综合类   13篇
自然地理   113篇
  2022年   7篇
  2021年   13篇
  2020年   14篇
  2019年   22篇
  2018年   35篇
  2017年   20篇
  2016年   33篇
  2015年   23篇
  2014年   38篇
  2013年   74篇
  2012年   37篇
  2011年   44篇
  2010年   41篇
  2009年   63篇
  2008年   66篇
  2007年   50篇
  2006年   38篇
  2005年   35篇
  2004年   32篇
  2003年   39篇
  2002年   31篇
  2001年   27篇
  2000年   13篇
  1999年   17篇
  1998年   14篇
  1997年   14篇
  1996年   16篇
  1995年   12篇
  1994年   7篇
  1993年   10篇
  1992年   4篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   12篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   15篇
  1982年   12篇
  1981年   5篇
  1980年   11篇
  1979年   9篇
  1978年   5篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
  1972年   3篇
  1969年   3篇
排序方式: 共有1044条查询结果,搜索用时 15 毫秒
151.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   
152.
In this study, we calculate accurate absolute locations for nearly 3,000 shallow earthquakes (≤20 km depth) that occurred from 1996 to 2010 in the Central Alborz region of northern Iran using a non-linear probabilistic relocation algorithm on a local scale. We aim to produce a consistent dataset with a realistic assessment of location errors using probabilistic hypocenter probability density functions. Our results indicate significant improvement in hypocenter locations and far less scattering than in the routine earthquake catalog. According to our results, 816 earthquakes have horizontal uncertainties in the 0.5–3.0 km range, and 981 earthquakes are relocated with focal-depth errors less than 3.0 km, even with a suboptimal network geometry. Earthquake relocated are tightly clustered in the eastern Tehran region and are mainly associated with active faults in the study area (the Mosha and Garmsar faults). Strong historical earthquakes have occurred along the Mosha and Garmsar faults, and the relocated earthquakes along these faults show clear north-dipping structures and align along east–west lineations, consistent with the predominant trend of faults within the study region. After event relocation, all seismicity lies in the upper 20 km of the crust, and no deep seismicity (>20 km depth) has been observed. In many circumstances, the seismicity at depth does not correlate with surface faulting, suggesting that the faulting at depth does not directly offset overlying sediments.  相似文献   
153.
154.
Main channel habitats of the Ohio, Missouri, and Upper Mississippi Rivers were surveyed during the summers of 2004, 2005 and 2006 using a probability-based sampling design to characterize inter-annual and inter-river variation in suspended chlorophyll a (CHLa) and related variables. Large (fivefold) differences in CHLa were observed with highest concentrations in the Upper Mississippi (32.3 ± 1.8 μg L−1), intermediate values in the Missouri (19.7 ± 1.1 μg L−1) and lowest concentrations in the Ohio (6.8 ± 0.5 μg L−1). Inter-annual variation was small in comparison to inter-river differences suggesting that basin-specific factors exert greater control over river-wide CHLa than regional-scale processes influencing climate and discharge. The rivers were characterized by variable but generally low light conditions as indicated by depth-averaged underwater irradiance <4 E m−2 day−1 and high ratios of channel depth to euphotic depth (>3). Despite poor light conditions, regression analyses revealed that TP was the best single predictor of CHLa (R 2 = 0.40), though models incorporating both light and TP performed better (R 2 = 0.60). Light and nutrient conditions varied widely within rivers and were inversely related, suggesting that riverine phytoplankton may experience shifts in resource limitation during transport. Inferred grazing and sedimentation losses were large yet CHLa concentrations did not decline downriver indicating that growth and loss processes were closely coupled. The contribution by algae to suspended particulate organic matter in these rivers (mean = 41%) was similar to that of lakes (39%) but lower relative to reservoirs (61%).  相似文献   
155.
The second order theory of elasticity, in which terms to second order in strain are retained in calculating atomic bond length changes and elastic moduli, is extended to describe thermal vibration of a face-centred cubic crystal. Coupled with equations relating the pressure dependences of elastic constants, this yields a new formulation of the thermal Grüneisen parameter γ in terms of pressure P, incompressibility K and rigidity, μ
λ12dKdP?12+19PK?13?19PKf1?23PK?23PKf
where f = 24 (3 K ? 2 P)/(3 K + 115 μ + 90 P). The factor f arises from bond interactions and the case f = 1, representing independent bonds (no interactions), yields the free-volume γ- Since we have shown earlier that the second order elasticity theory provides a convincing explanation of the elasticity of the inner core, we believe that the new formula is appropriate for the inner core. It is, however, inadequate to describe the lower mantle γ, in which atomic bond angle rigidity, not considered here, may be appreciable.  相似文献   
156.
157.
Six plastic/rubber materials commonly encountered in marine debris and beach litter were studied under Biscayne Bay (Florida, USA) exposure conditions to determine the effect of fouling on buoyancy. Studies under restricted floating, and restricted submerged exposure conditions suggest that most plastic samples undergo fouling to an extent to cause the sample to be negatively buoyant in sea water. Rapid defouling of the submerged fouled samples was observed. The findings suggest that free-floating plastics at sea may, under certain conditions, undergo fouling-induced sinking followed by resurfacing as floating debris.  相似文献   
158.
Pyroclastic flow emplacement is strongly influenced by eruption column height. A surface along which kinetic energy is zero theoretically connects the loci of eruption column collapse with all coeval ignimbrite termini. This surface is reconstructed as a two-dimensional energy line for the 1912 Katmai pyroclastic flow in the Valley of Ten Thousand Smokes from mapped flow termini and the runup of the ignimbrite onto obstructions and through passes. Extrapolation of the energy line to the vicinity of the source vent at Novarupta suggests the eruption column which generated the ignimbrite eruption was approximately 425 m high. The 1912 pyroclastic flow travelled about 25 km downvalley. Empirical velocity data calculated from runup elevations and surveyed centrifugal superelevations indicate initial velocities near Novarupta were greater than 79–88 m s–1. The flow progressively decelerated and was travelling only 2–8 m s–1 when it crossed a moraine 16 km downvalley. The constant slope of the energy line away from Novarupta suggests the flow was systematically slowed by internal and basal friction. Using a simple physical model to calculate flow velocities and a constant kinetic friction coefficient (Heim coefficient) of 0.04 derived from the reconstructed energy line, the flow is estimated to have decelerated at an average rate of –0.16 m s–2 and to have taken approximately 9.5 minutes to travel 25 km down the Valley of Ten Thousand Smokes. The shear strength of the flowing ignimbrite at the moraine was approximately 0.5 kPa, and its Bingham viscosity when it crossed the moraine was 3.5 × 103 P. If the flow was Newtonian, its viscosity was 4.2 × 103 P. Reynolds and Froude numbers at the moraine were only 41–62 and 0.84–1.04, respectively, indicating laminar, subcritical flow.  相似文献   
159.
160.
Spinifex-textured sills (i.e., veins) characterized by komatiitic magmas that have intruded their own volcanic-piles have long been recognized. For instance, in the early 1970s, Pyke and coworkers, in their classic work at Pyke Hill in Munro Township, noted that not all spinifex-bearing ultramafic rocks formed as lava flows, rather some were clearly emplaced as small dikes and sills. Several hypotheses have been proposed to explain spinifex-textured sills: intrusion into a cold host, filter pressing, or drainage of residual liquid. However, these do not satisfactorily explain the phenomenon. Field and petrographic observations at Pyke Hill and Serpentine Mountain demonstrate that spinifex-bearing komatiite sills and dikes were emplaced during channel inflation processes when new magma was intruded into a cooler, semi-consolidated but permeable cumulate material. Komatiitic liquids were intruded into the olivine cumulate rocks near the boundary between the spinifex and the cumulate zones of well-organized to organized komatiite flows. Spinifex-textured sills are generally tabular in morphology, stacked one above another, with curviplanar contacts sub-parallel to stratigraphy. Some sills exhibit complex digitated apophyses. Thinner sills typically have a random olivine spinifex texture similar, though generally composed of coarser crystals, to that of komatiite lava flows. Thicker sills exhibit more complex organization of their constituent crystals characterized by zones of random olivine spinifex, overlying zones of organized coarse spinifex crystals similar to those found in lava flows. They have striking coarse dendritic spinifex zones composed of very large olivine crystals, up to several centimetres long and up to 1 cm wide that are not observed in lava flows. Typically, at the sill margins, the cumulate material of the host flow is composed of euhedral to subhedral olivine crystals that are larger than those distal to the contact. Many of these margin-crystals have either concentric overgrowth shells or dendritic olivine overgrowths that grew from the cumulate-sill contact toward the sill interior. The dendrites grew on pre-existing olivine cumulate at the contact in response to a sharp temperature gradient imposed by the intrusion of hot material, whereas the concentric overgrowths formed as new melt percolated into the unconsolidated groundmass of the host-flow cumulate material. Spinifex-textured sills and dikes occur in well-organized to organized flows that are interpreted to have formed by “breakouts” above and peripheral to lava pathways (channels/conduits) as a result of inflation that accompanied voluminous komatiitic eruptions responsible for the construction and channelization of komatiitic flow fields. The spinifex-textured dikes and sills represent komatiitic lava that was originally emplaced into the channel roof during periods of episodic inflation that resulted in lava breakouts and was subsequently trapped in the “roof rocks” during periods of channel deflation. Accordingly, the occurrence of spinifex-textured sills and dikes may indicate proximity to, and aid in the identification and delineation of lava channel-ways that could potentially host Ni–Cu–(PGE) mineralization within komatiitic lava flow-fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号