首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   2篇
  国内免费   3篇
测绘学   6篇
大气科学   18篇
地球物理   36篇
地质学   57篇
海洋学   21篇
天文学   10篇
综合类   2篇
自然地理   9篇
  2022年   2篇
  2021年   1篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   22篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1972年   2篇
  1969年   1篇
  1968年   2篇
排序方式: 共有159条查询结果,搜索用时 46 毫秒
91.
A comparison between HBr-HCl and HBr-HNO3 based anion chemistry is presented to test the efficiency of Pb purification in the preparation of samples for isotope ratio measurement by ICP-MS. It was found that the small advantages in yield and blank offered by the HNO3-based method were more than compensated by the more effective matrix removal of the HCl-based method. Apart from very zinc rich matrices (e.g., sphalerite), a careful single pass purification using HBr and HCl removed more than 99.9% of the matrix. In preparation for the isotope ratio analysis, a small (2–5% m/v) liquid sample aliquot was analysed to determine U, Th and Pb concentrations by solution quadrupole ICP-MS. This allowed accurate prediction of the expected ion signal and permitted optimal spiking with Tl, if desired, for mass bias correction. Long-term results for international rock reference materials showed reproducibilities of better than 1% (Th/U) and 1.5% (U/Pb). For most geological applications, such analyses obviate the need for isotope dilution concentration measurements.  相似文献   
92.
The mechanical efficiency of the biocementation process is directly related to the microstructural properties of the biocemented sand, such as the volume fraction of calcite, its distribution within the pore space, coordination number, contact surface area, and types of contact. In the present work, some of these microscopic properties are computed, from 3D images obtained by X-ray tomography of biocemented sand. These properties are then used as an input in current analytical models to estimate the elastic properties (Young and shear moduli) and the strength properties (Coulomb cohesion). For the elastic properties, the analytical estimates (contact cement theory model) are compared with classical bounds, self-consistent estimate and numerical results obtained by direct computation (FEM computation) on the same 3D images. Concerning the cohesion, an analytical model initially developed to estimate the cohesion due to suction in unsaturated soils is modified to evaluate the macroscopic cohesion of biocemented sands. Such analytical model is calibrated on experimental data obtained from triaxial tests performed on the same biocemented sand. In overall, the presented results point out the important role of some microstructural parameters, notably those related to the contact, on such effective parameters.  相似文献   
93.
In this contribution, we describe the global GOCE-only gravity field model ITG-Goce02 derived from 7.5 months of gradiometer and orbit data. This model represents an alternative to the official ESA products as it is computed completely independently, using a different processing strategy and a separate software package. Our model is derived using the short arc approach, which allows a very effective decorrelation of the highly correlated GOCE gradiometer and orbit data noise by introducing a full empirical covariance matrix for each arc, and gives the possibility to downweight ‘bad’ arcs. For the processing of the orbit data we rely on the integral equation approach instead of the energy integral method, which has been applied in several other GOCE models. An evaluation against high-resolution global gravity field models shows very similar differences of our model compared to the official GOCE results published by ESA (release 2), especially to the model derived by the time-wise approach. This conclusion is confirmed by comparison of the GOCE models to GPS/levelling and altimetry data.  相似文献   
94.
Dot mapping is a cartographic representation method to visualise discrete absolute values and their spatial distribution. To achieve this, dots equal in size and represented value are used. According to the dot value, a certain number of dots are used to depict a data value. These dots usually form dot clusters. The data value needs to be rounded to a multiple of the dot value. It is possible to roughly determine the visualised data value by counting the dots and multiplying this number with the dot value. As there are many parameters – dot size, dot value, map scale – to consider when designing a dot map, the manual way is very complex and time consuming. This paper presents a method to automatically create a dot representation of a dot map from given statistical data that needs no cartographic expertise. The dot representation may be combined with other elements, such as a topographic background, to form a complete map. So the algorithm can easily be integrated into the map design process. The paper refines the basic approach of automated dot mapping published earlier. The dot placement and arrangement have been improved compared to the basic method.  相似文献   
95.
Groundwater, under sustainable management policies, can be an invaluable source of water to municipal, agricultural, and industrial sectors. Management, however, can be challenging given that historically, these resources have been privately owned and minimally regulated. This research details the development of a decision support system (DSS) which couples a GIS-based multi-criteria decision-making (MCDM) scheme with simulation-optimization routines to identify suitable regions for groundwater development and optimal preferences for apportioning those supplies to areas of demand in South Texas. The developed DSS consisted of three modules: (1) a GIS-based MCDM for identifying suitable locations for groundwater production; (2) a simulation-optimization model for estimating available groundwater; and (3) a transportation optimization model for redistributing the groundwater. Applying a comprehensive suite of nine exclusionary criteria in GIS resulted in only 15,304 km2 (5,909 mi2) suitable for groundwater production out of the original ~50,500 km2 (19,500 mi2). Two ideal sites were selected in the suitable region based on proposed major water supply projects in the study area. The projected groundwater extraction rates per month varied considerably over a year emphasizing a need for storage technologies. Furthermore, a transportation optimization model, which considered cost of storage and movement, was developed and applied to obtain the most optimal scheme to transport groundwater from potential supply centers located in Bee and Kennedy counties to projected water deficit areas of San Antonio, Laredo, and McAllen, TX, USA. Lastly, a full-factorial sensitivity analysis was carried out to check the impacts of the supply and demand factors on groundwater production and transport. Policies at the supply centers had a larger impact on the total availability of water, and policies at the demand centers had a larger impact on the total cost of the management scheme. Furthermore, an analysis of total volume stored in a storage and recovery system exhibited an inverse relationship with the groundwater development (supply side) policies and a direct relationship with the demand requirements. The developed DSS proved useful for determining the most optimal siting and distribution network for groundwater sources in South Texas.  相似文献   
96.
97.
A 3rd‐generation smart balloon designed at National Oceanic and Atmospheric Administration, Air Resources Laboratory Field Research Division, in collaboration with the University of Hawaii, was released from ship‐board during the recent Second Aerosol Characterization Experiment (ACE‐2) to provide Lagrangian air‐mass tracking data. ACE‐2 is the 3rd in a series of field experiments designed to study the chemical, physical, and radiative properties and processes of atmospheric aerosols and their role in climate and is organized by the international global atmospheric chemistry (IGAC) program. The adjective smart in the title of this paper refers to the fact that the buoyancy of the balloon automatically adjusts through the act of pumping air into or releasing air from the ballast portion of the balloon when it travels vertically outside a barometric pressure range set prior to release. The smart balloon design provides GPS location, barometric pressure, temperature, relative humidity, and other data via a transponder to a C130 research aircraft flying in the vicinity of the balloon. The addition of 2‐way communication allows interactive control of the balloon operating parameters by an observer. A total of 3 cloudy Lagrangian experiments were conducted during the ACE‐2 field program which lasted from 16 June through 26 July 1997. This paper reviews the design and capability of the smart balloons and their performance during the ACE‐2 Lagrangian experiments. Future development and applications of the technology are discussed.  相似文献   
98.
Failure to account for non-climatic changes to water systems, such as design and operation, within climate change impact assessments leads to misconceptions because these activities buffer the human built enviroment from bio-physical impacts. Urban drainage in cold regions, which is dominated by snowmelt, is especially vulnerable to climate change and is investigated in this paper within the context of future rehabilitation of the sewer network. The objectives are to illustrate the relative response of urban drainage to changes in both the pipe network and climate and demonstrate the use of response surfaces for climate change studies. An incremental climate scenario approach is used to generate two sensitivity analyses for waste water inflows to the Lycksele waste water treatment plant in north-central Sweden. Air temperature and precipitation data (1984–1993) are altered incrementally between –5 and +15 °C and –10 and +40% respectively. These data are then used to drive a hydrological transformation model to obtain estimates of sewer infiltration from groundwater. The results are presented as winter and spring response surfaces – these are graphical representations of a response matrix where each point relates to a single model run. Climate scenario envelopes which summarise a series of GCM runs (ACACIA; Carter, 2002, pers. comm.) are overlaid to indicate the range of plausible waste water inflows. Estimates of natural multi-decadal variability are also included. The first sensitivity analysis assumes no change to the drainage system while the second simulates sewer renovation in which the system is fully separated and sewer infiltration is reduced. The main conclusions are that innovations in drainage network technology have a greater potential to alter waste water inflows than climate change and that, while the direction of climate change is fairly certain, there is great uncertainty surrounding magnitude of those changes and their impacts.  相似文献   
99.
An experimental approach was used in determining which factors, natural or man made, had the greatest impact on estuarine microplankton ecology. In microcosms, filled with natural water of <5‰, 10‰, 18‰ and > 26‰ salinity, the impact of high organic load (glucose), shading, Cu and a heavy metal mixture on the microplankton populations was monitored. Naturally occurring perturbations were of much greater impact to estuarine ecology than the addition of heavy metals in concentrations five to ten times that which are known to occur in moderately polluted estuaries.  相似文献   
100.
The scientific community has expressed strong interest to re-fly Stardust-like missions with improved instrumentation. We propose a new mission concept, SARIM, that collects interstellar and interplanetary dust particles and returns them to Earth. SARIM is optimised for the collection and discrimination of interstellar dust grains. Improved active dust collectors on-board allow us to perform in-situ determination of individual dust impacts and their impact location. This will provide important constraints for subsequent laboratory analysis. The SARIM spacecraft will be placed at the L2 libration point of the Sun–Earth system, outside the Earth’s debris belts and inside the solar-wind charging environment. SARIM is three-axes stabilised and collects interstellar grains between July and October when the relative encounter speeds with interstellar dust grains are lowest (4 to 20 km/s). During a 3-year dust collection period several hundred interstellar and several thousand interplanetary grains will be collected by a total sensitive area of 1 m2. At the end of the collection phase seven collector modules are stored and sealed in a MIRKA-type sample return capsule. SARIM will return the capsule containing the stardust to Earth to allow for an extraction and investigation of interstellar samples by latest laboratory technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号