首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   901篇
  免费   28篇
  国内免费   5篇
测绘学   4篇
大气科学   79篇
地球物理   181篇
地质学   399篇
海洋学   92篇
天文学   94篇
综合类   1篇
自然地理   84篇
  2024年   2篇
  2022年   2篇
  2021年   15篇
  2020年   18篇
  2019年   18篇
  2018年   20篇
  2017年   26篇
  2016年   32篇
  2015年   34篇
  2014年   29篇
  2013年   57篇
  2012年   41篇
  2011年   64篇
  2010年   47篇
  2009年   43篇
  2008年   48篇
  2007年   54篇
  2006年   53篇
  2005年   43篇
  2004年   25篇
  2003年   23篇
  2002年   27篇
  2001年   17篇
  2000年   21篇
  1999年   16篇
  1998年   10篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   13篇
  1990年   3篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1975年   2篇
  1973年   3篇
  1969年   1篇
  1968年   2篇
排序方式: 共有934条查询结果,搜索用时 15 毫秒
111.
112.
The North American Laurentian Great Lakes hold nearly 20 % of the earth’s unfrozen fresh surface water and have a length of coastline, and a coastal population, comparable to frequently-studied marine coasts. The surface water elevations of the Great Lakes, in particular, are an ideal metric for understanding impacts of climate change on large hydrologic systems, and for assessing adaption measures for absorbing those impacts. In light of the importance of the Great Lakes to the North American and global economies, the Great Lakes and the surrounding region also serve as an important benchmark for hydroclimate research, and offer an example of successful adaptive management under changing climate conditions. Here, we communicate some of the important lessons to be learned from the Great Lakes by examining how the coastline, water level, and water budget dynamics of the Great Lakes relate to other large coastal systems, along with implications for water resource management strategies and climate scenario-derived projections of future conditions. This improved understanding fills a critical gap in freshwater and marine global coastal research.  相似文献   
113.
Forest tenure reform in the age of climate change: Lessons for REDD+   总被引:1,自引:0,他引:1  
Numerous authors have stressed the importance of guaranteeing and protecting the tenure and human rights of indigenous and other forest-based communities under schemes for reducing emissions from deforestation and forest degradation (REDD, or REDD+); and important international indigenous organizations have spoken out strongly against REDD+. This article examines two specific issues that present risks for local communities: rights to forests and rules for resource use. It draws on the findings of a study conducted by the Center for International Forestry Research (CIFOR) on forest tenure reforms in selected countries in Asia, Africa and Latin America from 2006 to 2008. The study underlines the numerous obstacles faced by communities after rights are won, in moving from statutory rights to their implementation and to access to benefits on the ground. It argues that there is currently little reason to expect better results from national policies under REDD+ without binding agreements to protect local rights.  相似文献   
114.
115.
A number of international donors, national governments and project proponents have begun to lay the groundwork for REDD+, but tenure insecurity – including the potential risks of land grabbing by outsiders and loss of local user rights to forests and forest land – is one of the main reasons that many indigenous and other local peoples have publicly opposed it. Under what conditions is REDD+ a threat to local rights, and under what conditions does it present an opportunity? This article explores these issues based on available data from a global comparative study on REDD+, led by the Center for International Forestry Research, which is studying national policies and processes in 12 countries and 23 REDD+ projects in 6 countries. The article analyses how tenure concerns are being addressed at both national and project level in emerging REDD+ programs. The findings suggest that in most cases REDD+ has clearly provided some new opportunities for securing local tenure rights, but that piecemeal interventions by project proponents at the local level are insufficient in the absence of broader, national programs for land tenure reform. The potential for substantial changes in the status quo appear unlikely, though Brazil – the only one with such a national land tenure reform program – offers useful insights. Land tenure reform – the recognition of customary rights in particular – and a serious commitment to REDD+ both challenge the deep-rooted economic and political interests of ‘business as usual’.  相似文献   
116.
Snow is Earth's most climatically sensitive land cover type. Traditional snow metrics may not be able to adequately capture the changing nature of snow cover. For example, April 1 snow water equivalent (SWE) has been an effective index for streamflow forecasting, but it cannot express the effects of midwinter melt events, now expected in warming snow climates, nor can we assume that station-based measurements will be representative of snow conditions in future decades. Remote sensing and climate model data provide capacity for a suite of multi-use snow metrics from local to global scales. Such indicators need to be simple enough to “tell the story” of snowpack changes over space and time, but not overly simplistic or overly complicated in their interpretation. We describe a suite of spatially explicit, multi-temporal snow metrics based on global satellite data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and downscaled climate model output for the U.S. We describe and provide examples for Snow Cover Frequency (SCF), Snow Disappearance Date (SDD), At-Risk Snow (ARS), and Frequency of a Warm Winter (FWW). Using these retrospective and prospective snow metrics, we assess the current and future snow-related conditions in three hydroclimatically different U.S. watersheds: the Truckee, Colorado Headwaters, and Upper Connecticut. In the two western U.S. watersheds, SCF and SDD show greater sensitivity to annual differences in snow cover compared with data from the ground-based Snow Telemetry (SNOTEL) network. The eastern U.S. watershed does not have a ground-based network of data, so these MODIS-derived metrics provide uniquely valuable snow information. The ARS and FWW metrics show that the Truckee Watershed is highly vulnerable to conversion from snowfall to rainfall (ARS) and midwinter melt events (FWW) throughout the seasonal snow zone. In comparison, the Colorado Headwaters and Upper Connecticut Watersheds are colder and much less vulnerable through mid- and late-century.  相似文献   
117.
118.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
119.
A workflow for simultaneous joint PP‐PS prestack inversion of data from the Schiehallion field on the United Kingdom Continental Shelf is presented and discussed. The main challenge, describing reasonable PS to PP data registration before any prestack or joint PP‐PS inversion, was overcome thanks to a two‐stage process addressing the signal envelope, then working directly on the seismic data to estimate appropriate time‐variant time‐shift volumes. We evaluated the benefits of including PS along with PP prestack seismic data in a joint inversion process to improve the estimated elastic property quality and also to enable estimation of density compared with other prestack and post‐stack inversion approaches. While the estimated acoustic impedance exhibited a similar quality independent of the inversion used (PP post‐stack, PP prestack or joint PP‐PS prestack inversion) the shear impedance estimation was noticeably improved by the joint PP‐PS prestack inversion when compared to the PP prestack inversion. Finally, the density estimated from joint PP and PS prestack data demonstrated an overall good quality, even where not well‐controlled. The main outcome of this study was that despite several data‐related limitations, inverting jointly correctly processed PP and PS data sets brought extra value for reservoir delineation as opposed to PP‐only or post‐stack inversion.  相似文献   
120.
This work proposes a complete method for automatic inversion of data from hydraulic interference pumping tests based on both homogeneous and fractal dual-medium approaches. The aim is to seek a new alternative concept able to interpret field data, identify macroscopic hydraulic parameters and therefore enhance the understanding of flow in porous fractured reservoirs. Because of its much contrasted sensitivities to parameters, the dual-medium approach yields an ill-posed inverse problem that requires a specific optimization procedure including the calculation of analytical sensitivities and their possible re-scaling. Once these constraints are fulfilled, the inversion proves accurate, provides unambiguous and reliable results. In the fractal context inverting several drawdown curves from different locations at the same time reveals more accurate. Finally, hydraulic parameters drawn from inversion should be taken into account to improve in various situations the conditioning of up-scaled flow in fractured rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号