排序方式: 共有13条查询结果,搜索用时 21 毫秒
1.
Using results from coupled climate model simulations of the 8.2 ka climate event that produced a cold period over Greenland in agreement with the reconstructed cooling from ice cores, we investigate the typical pattern of climate anomalies (fingerprint) to provide a framework for the interpretation of global proxy data for the 8.2 ka climate event. For this purpose we developed an analysis method that isolates the forced temperature response and provides information on spatial variations in magnitude, timing and duration that characterise the detectable climate event in proxy archives. Our analysis shows that delays in the temperature response to the freshwater forcing are present, mostly in the order of decades (30 a over central Greenland). The North Atlantic Ocean initially cools in response to the freshwater perturbation, followed in certain parts by a warm response. This delay, occurring more than 200 a after the freshwater pulse, hints at an overshoot in the recovery from the freshwater perturbation. The South Atlantic and the Southern Ocean show a warm response reflecting the bipolar seesaw effect. The duration of the simulated event varies for different areas, and the highest probability of recording the event in proxy archives is in the North Atlantic Ocean area north of 40° N. Our results may facilitate the interpretation of proxy archives recording the 8.2 ka event, as they show that timing and duration cannot be assumed to correspond with the timing and duration of the event as recorded in Greenland ice cores. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
3.
Håkon Austrheim Christine V. Putnis Ane K. Engvik Andrew Putnis 《Contributions to Mineralogy and Petrology》2008,156(4):517-527
Ilmenite in coronitic gabbros from the Bamble and Kongsberg sectors, southern Norway, is surrounded by zircons ranging in
diameters from a fraction of a micrometer to 10 μm across. The zircons are inert during subsequent metamorphism (amphibolite-
to pumpellyite–prehnite facies) and metasomatism (scapolitization and albitization) and can be found as trails in silicates
(phlogopite, talc, chlorite, amphibole, albite, and tourmaline) in the altered rocks. The trails link up to form polygons
outlining the former oxide grain boundary. This 3-dimensional framework of zircons is used to (a) recognize metasomatic origin
of rocks, (b) quantify the mobility of elements during mineral replacement, (c) establish the growth direction of reaction
fronts and to identify the reaction mechanism as dissolution–reprecipitation. Zircon coronas on Fe–Ti oxides have been described
from a number of terrains and appear to be common in mafic rocks (gabbros and granulites) providing a tool for a better understanding
of metasomatic and metamorphic reactions. 相似文献
4.
5.
We investigate the potential role of icebergs in the 8.2 ka climate event, using a coupled climate model equipped with an iceberg component. First, we evaluate the effect of a large iceberg discharge originating from the decaying Laurentide ice sheet on ocean circulation, compared to a release of an identical volume of freshwater alone. Our results show that, on top of the freshwater effect, a large iceberg discharge facilitates sea-ice growth as a result of lower sea-surface temperatures induced by latent heat of melting. This causes an 8% increased sea-ice cover, 5% stronger reduction in North Atlantic Deep Water production and 1°C lower temperature in Greenland. Second, we use the model to investigate the effect of a hypothetical two-stage lake drainage, which is suggested by several investigators to have triggered the 8.2 ka climate event. To account for the final collapse of the ice-dam holding the Laurentide Lakes we accompany the secondary freshwater pulse in one scenario with a fast 5-year iceberg discharge and in a second scenario with a slow 100-year iceberg discharge. Our experiments show that a two-stage lake drainage accompanied by the collapsing ice-dam could explain the anomalies observed around the 8.2 ka climate event in various climate records. In addition, they advocate a potential role for icebergs in the 8.2 ka climate event and illustrate the importance of latent heat of melting in the simulation of climate events that involve icebergs. Our two-stage lake drainage experiments provide a framework in the discussion of two-stage lake drainage and ice sheet collapse. 相似文献
6.
Suspended sediment delivery from small catchments to the Bay of Biscay. What are the controlling factors? 下载免费PDF全文
The transport and yield of suspended sediment (SS) in catchments all over the world have long been topics of great interest. This paper addresses the scarcity of information on SS delivery and its environmental controls in small catchments, especially in the Atlantic region. Five steep catchments in Gipuzkoa (Basque Country) with areas between 56 and 796 km2 that drain into the Bay of Biscay were continuously monitored for precipitation, discharge and suspended sediment concentration (SSC) in their outlets from 2006 to 2013. Environmental characteristics such as elevation, slope, land‐use, soil depth and erodibility of the lithology were also calculated. The analysis included consideration of uncertainties in the SSC calibration models in the final suspended sediment yield (SSY) estimations. The total delivery of sediments from the catchments into the Bay of Biscay and its standard deviation was 272 200 ± 38 107 t yr.?1, or 151 ± 21 t km?2 yr.?1, and the SSYs ranged from 46 ± 0.48 to 217 ± 106 t km?2 yr.?1. Hydroclimatic variables and catchment areas do not explain the spatial variability found in SSY, whereas land‐use (especially non‐native plantations) and management (human impacts) appear to be the main factors that control this variability. Obtaining long‐term measurements on sediment delivery would allow for the effects of environmental and human induced changes on SS fluxes to be better detected. However, the data provided in this paper offer valuable and quantitative information that will enable decision‐makers to make more informed decisions on land management while considering the effects of the delivery of SS. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event. 相似文献
8.
40Ar/39Ar geochronological data on hornblende, biotite and K-feldspar provide constraints on the cooling path experienced by a high-grade metamorphic complex from the Mühlig–Hofmannfjella and Filchnerfjella (6–8°E), central Dronning Maud Land, Antarctica, during the late Neoproterozoic-early Palaeozoic Pan–African orogeny. Hornblende ages yield c. 481 Ma, biotite ages range from c. 466 Ma to c. 435 Ma, whereas K-feldspar ages of the gneisses are c. 437 Ma. The 40Ar/39Ar data suggest initial cooling at a rate of ~10 °C/Myr between 481 and 465 Ma, followed by a lower cooling rate of ~6 °C/Myr during the subsequent c. 30 million years. The K-feldspar 40Ar/39Ar ages place a lower time limit on the duration of the exhumation, by the time of thermal relaxation to a stable continental geotherm. The 40Ar/39Ar data reflecting cooling indicate tectonic exhumation related to orogenic collapse during a later phase of the Pan–African orogeny. 相似文献
9.
A systematic study of the impact of freshwater pulses with respect to different geographical locations 总被引:1,自引:1,他引:0
The first comparative and systematic climate model study of the sensitivity of the climate response under Last Glacial Maximum (LGM) conditions to freshwater perturbations at various locations that are known to have received significant amounts of freshwater during the LGM (21 kyr BP) climate conditions is presented. A series of ten regions representative of those receiving most of the meltwater from decaying ice-sheets during the deglaciation is defined, comprising the border of LGM ice-sheets, outlets of rivers draining part of the melting ice-sheets and iceberg melt zones. The effect of several given freshwater fluxes applied separately in each of these regions on regional and global climate is subsequently tested. The climate response is then analysed both for the atmosphere and oceans. Amongst the regions defined, it is found that the area close by and dynamically upstream to the main deep water formation zone in the North Atlantic are most sensitive to freshwater pulses, as is expected. However, some important differences between Arctic freshwater forcing and Nordic Seas forcing are found, the former having a longer term response linked to sea-ice formation and advection whereas the latter exhibits more direct influence of direct freshening of the deep water formation sites. Combining the common surface temperature response for each respective zone, we fingerprint the particular surface temperature response obtained by adding freshwater in a particular location. This is done to examine if a surface climate response can be used to determine the origin of a meltwater flux, which is relevant for the interpretation of proxy data. We show that it is indeed possible to generally classify the fingerprints by their origin in terms of sea-ice modification and modification of deep-water formation. Whilst the latter is not an unambiguous characterization of each zone, it nonetheless provides important clues on the physical mechanisms at work. In particular, it is shown that in order to obtain a consistent see-saw temperature pattern, addition of freshwater in the Northern Hemisphere at sites dynamically close to the deep water formation zones is needed. Finally a preliminary data—model comparison for the time of the Heinrich event 1 suggests that those sites are indeed the most favourable to explain the pattern of climate variability recorded in proxy data for this period. More importantly, this model—data comparison enables us to clearly reject a substantial fraction of the zones tested as potential source for large freshwater entering the ocean at that time. 相似文献