首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2598篇
  免费   119篇
  国内免费   34篇
测绘学   88篇
大气科学   292篇
地球物理   665篇
地质学   789篇
海洋学   219篇
天文学   359篇
综合类   6篇
自然地理   333篇
  2022年   13篇
  2021年   50篇
  2020年   59篇
  2019年   54篇
  2018年   66篇
  2017年   81篇
  2016年   110篇
  2015年   88篇
  2014年   97篇
  2013年   183篇
  2012年   118篇
  2011年   157篇
  2010年   123篇
  2009年   145篇
  2008年   145篇
  2007年   141篇
  2006年   133篇
  2005年   108篇
  2004年   92篇
  2003年   93篇
  2002年   83篇
  2001年   52篇
  2000年   57篇
  1999年   38篇
  1998年   36篇
  1997年   30篇
  1996年   28篇
  1995年   30篇
  1994年   20篇
  1993年   19篇
  1992年   13篇
  1991年   18篇
  1990年   16篇
  1989年   28篇
  1988年   11篇
  1987年   20篇
  1986年   12篇
  1985年   23篇
  1984年   14篇
  1983年   16篇
  1982年   13篇
  1981年   19篇
  1980年   11篇
  1979年   13篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   8篇
  1972年   6篇
排序方式: 共有2751条查询结果,搜索用时 0 毫秒
81.
The Australian coast contains 10,685 beaches which occupy 49% of the 30,000 km coast and average 1.37 km in length. Their relatively short length is largely due to the presence of bedrock, calcarenite and laterite, which form boundaries to many of the beaches, as well as occurring as rocks, reefs and islands along and off the beaches. This geological inheritance plays a major role in Australian beach systems — determining their length and through wave refraction and attenuation influencing beach location, shape, type, morphodynamics and circulation, which in turn influence sediment transport and the backing dune and barrier systems. This paper uses a database covering every Australian beach to review the role of headlands, rocks and reefs on Australian beaches. Major effects are the short average beach length; reduction in breaker height resulting in lower energy beach types; wave refraction resulting in increased beach curvature; the presence of topographic rips on moderate and higher energy beaches and megarips during high wave conditions; and the interruption of and/or trapping of longshore sand transport leading to beach rotation.  相似文献   
82.
Identifying and mapping olivine on asteroid 4 Vesta are important components to understanding differentiation on that body, which is one of the objectives of the Dawn mission. Harzburgitic diogenites are the main olivine‐bearing lithology in the howardite‐eucrite‐diogenite (HED) meteorites, a group of samples thought to originate from Vesta. Here, we examine all the Antarctic harzburgites and estimate that, on scales resolvable by Dawn, olivine abundances in putative harzburgite exposures on the surface of Vesta are likely at best in the 10–30% range, but probably lower due to impact mixing. We examine the visible/near‐infrared spectra of two harzburgitic diogenites representative of the 10–30% olivine range and demonstrate that they are spectrally indistinguishable from orthopyroxenitic diogenites, the dominant diogenitic lithology in the HED group. This suggests that the visible/near‐infrared spectrometer onboard Dawn (VIR) will be unable to resolve harzburgites from orthopyroxenites on the surface of Vesta, which may explain the current lack of identification of harzburgitic diogenite on Vesta.  相似文献   
83.
Abstract— Using an H‐plot analysis, we identify 234 currently known near‐Earth objects that are accessible for rendezvous with a “best case” delta‐V of less than 7 km/s. We provide a preliminary compositional interpretation and assessment of these potential targets by summarizing the taxonomic properties for 44 objects. Results for one‐half (22) of this sample are based on new spectroscopic measurements presented here. Our approach provides an easy‐to‐update method for giving guidelines to both observers and mission analysts for focusing on objects for which actual mission opportunities are most likely to be found. Observing prospects are presented for categorizing the taxonomic properties of the most accessible targets that are not yet measured.  相似文献   
84.
This paper compares hydrologic records and geomorphic effects of several historic floods in the central Appalachian region of the eastern United States. The most recent of these, occurring in November 1985, was the largest ever recorded in West Virginia, with peak discharges exceeding the estimated 500-year discharge at eight of eleven stations in the South Branch Potomac River and Cheat River basins. Geomorphic effects on valley floors included some of the most severe and widespread floodplain erosion ever documented and exceeded anything seen in previous floods, even though comparable or greater rainfall and unit discharge have been observed several times in the region over the past 50 years. Comparison of discharge-drainage area plots suggests that the intensity and spatial scale of the November 1985 flood were optimal for erosion of valley floors along the three forks of the South Branch Potomac River. However, when a larger geographic area is considered, rainfall totals and discharge-drainage area relationships are insufficient predictors of geomorphic effectiveness for valley floors at drainage areas of 250 to 2500 km2. Unit stream power was calculated for the largest recorded flood discharge at 46 stations in the central Appalachians. Maximum values of unit stream power are developed in bedrock canyons, where the boundaries are resistant to erosion and the flow cross-section cannot adjust its width to accommodate extreme discharges. The largest value was 2570 W m?2; record discharge at most stations was associated with unit stream power values less than 300 W m?2, but more stations exceeded this value in the November 1985 flood than in the other floods that were analysed. Unit stream power at indirect discharge measurement sites near areas experiencing severe erosion in this and other central Appalachian floods generally exceeded 300 W m?2; reach-average values of 200-500 W m?2 were calculated for valleys where erosion damage was most widespread. Despite these general trends, unit stream power is not a reliable predictor of geomorphic change for individual sites. Improved understanding of flood impacts will require more detailed investigation of interactions between local site characteristics and patterns of flood flow over the valley floor.  相似文献   
85.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   
86.
Hypothesis of possible superconductivity of the iced matter of the rings of Saturn (based on the data of Voyager and Pioneer space missions) allow us to explain many phenomena which have not been adequately understood earlier. Introducing into planetary physics force of magnetic levitation of the superconducting iced particle of the rings, which interact with magnetosphere of the planet, becomes to be possible to explain origin, evolution, and dynamics of the rings; to show how the consequent precipitation of the rings’ matter upon the planet was concluded; how the rings began their rotation; how they were compressed by the magnetic field into the thin disc, and how this disc was fractured into hundreds of thousands of separated rings; why in the ring B do exist “spokes”; why magnetic field lines have distortion near by ring F; why there is a variable azimuth brightness of the ring A; why the rings reflected radio waves so efficiently; why exists strong electromagnetic radiation of the rings in the 20.4 kHz–40.2 MHz range and Saturnian kilometric radiation; why there is anomalous reflection of circularly polarized microwaves; why there are spectral anomalies of the thermal radiation of the rings; why the matter of the various rings does not mix but preserves its small-scale color differences; why there is an atmosphere of unknown origin nearby the rings of Saturn; why there are waves of density and bending waves within Saturn’s rings; why planetary rings in the solar system appear only after the Belt of Asteroids (and may be the Belt of Asteroids itself is a ring for the Sun); why our planet Earth has no rings of its own.  相似文献   
87.
This study provides the first response data for ten Southern California macrophytes exposed to untreated, primary, secondary and secondary chlorinated sewage effluent during long-term culture studies in the laboratory as well as short-term metabolic studies in the field and in the laboratory. Bossiella orbigniana, Lithothrix aspergillum and Corallina officinalis var, chilensis had relatively broad homeostatic capabilities and enhanced net production rates when exposed to primary treated sewage. In the long-term cultures, Amphiroa zonata, B. orbigniana and C. officinalis var. chilensis all demonstrated enhanced growth in the presence of primary sewage. Chlorination of effluent had only a short-term negative effect; i.e. species' responses to secondary and secondary chlorinated sewage were virtually identical beyond the second week in culture. Three populations of C. officinalis var. chilensis with differing pollution histories showed a tolerance to sewage corresponding to the extent of previous exposure, indicating that this species may be able to acclimate physiologically to sewage stress. The more sewage-tolerant macrophytes displayed lower photosynthetic quotient values during exposure to effluent than those possessing little tolerance to sewage.  相似文献   
88.
The known close approach of Asteroid (99942) Apophis in April 2029 provides the opportunity for the case study of a potentially hazardous asteroid in advance of its encounter. The visible to near-infrared (0.55 to 2.45 μm) reflectance spectrum of Apophis is compared and modeled with respect to the spectral and mineralogical characteristics of likely meteorite analogs. Apophis is found to be an Sq-class asteroid that most closely resembles LL ordinary chondrite meteorites in terms of spectral characteristics and interpreted olivine and pyroxene abundances, although we cannot rule out some degree of partial melting. A meteorite analog allows some estimates and conjectures of Apophis' possible range of physical properties such as the grain density and micro-porosity of its constituent material. Composition and size similarities of Apophis with (25143) Itokawa suggest a total porosity of 40% as a “current best guess” for Apophis. Applying these parameters to Apophis yields a mass estimate of 2×1010 kg with a corresponding energy estimate of 375 Mt for its potential hazard. Substantial unknowns, most notably the total porosity, allow uncertainties in these mass and energy estimates to be as large as factors of two or three.  相似文献   
89.
Abstract— It is reasonable to expect that cometary samples returned to Earth by the Stardust space probe have been altered to some degree during capture in aerogel at 6.1 km/s. In order to help interpret the measured structure of these particles with respect to their original cometary nature, a series of coal samples of known structure and chemical composition was fired into aerogel at Stardust capture velocity. This portion of the study analyzed the surfaces of aerogel‐embedded particles using Raman spectroscopy. Results show that particle surfaces are largely homogenized during capture regardless of metamorphic grade or chemical composition, apparently to include a devolatilization step during capture processing. This provides a possible mechanism for alteration of some aliphatic compound‐rich phases through devolatilization of cometary carbonaceous material followed by re‐condensation within the particle. Results also show that the possibility of alteration must be considered for any particular Stardust grain, as examples of both graphitization and amorphization are found in the coal samples. It is evident that Raman G band (~1580 cm?1) parameters provide a means of characterizing Stardust carbonaceous material to include identifying those grains which have been subjected to significant capture alteration.  相似文献   
90.
We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury’s sodium exosphere. The distribution of sodium in Mercury’s exosphere during the period January 12-15, 2008, was mapped using the McMath-Pierce solar telescope with the 5″ × 5″ image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury’s anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD, but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization. We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 × 106 cm−2 s−1. The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号