首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2607篇
  免费   149篇
  国内免费   34篇
测绘学   88篇
大气科学   301篇
地球物理   676篇
地质学   796篇
海洋学   216篇
天文学   370篇
综合类   6篇
自然地理   337篇
  2022年   13篇
  2021年   49篇
  2020年   64篇
  2019年   54篇
  2018年   68篇
  2017年   82篇
  2016年   107篇
  2015年   89篇
  2014年   97篇
  2013年   183篇
  2012年   118篇
  2011年   158篇
  2010年   122篇
  2009年   143篇
  2008年   143篇
  2007年   143篇
  2006年   142篇
  2005年   110篇
  2004年   94篇
  2003年   94篇
  2002年   83篇
  2001年   56篇
  2000年   57篇
  1999年   38篇
  1998年   34篇
  1997年   31篇
  1996年   28篇
  1995年   32篇
  1994年   20篇
  1993年   20篇
  1992年   12篇
  1991年   18篇
  1990年   16篇
  1989年   29篇
  1988年   12篇
  1987年   20篇
  1986年   11篇
  1985年   26篇
  1984年   17篇
  1983年   21篇
  1982年   16篇
  1981年   20篇
  1980年   10篇
  1979年   15篇
  1978年   9篇
  1977年   7篇
  1976年   8篇
  1975年   8篇
  1974年   9篇
  1972年   5篇
排序方式: 共有2790条查询结果,搜索用时 343 毫秒
911.
Estuaries are highly variable environments where fish are subjected to a diverse suite of habitat features (e.g., water quality gradients, physical structure) that filter local assemblages from a broader, regional species pool. Tidal, climatological, and oceanographic phenomena drive water quality gradients and, ultimately, expose individuals to other habitat features (e.g., stationary physical or biological elements, such as bathymetry or vegetation). Relationships between fish abundances, water quality gradients, and other habitat features in the Sacramento-San Joaquin Delta were examined as a case example to learn how habitat features serve as filters to structure local assemblages in large river-dominated estuaries. Fish communities were sampled in four tidal lakes along the estuarine gradient during summer-fall 2010 and 2011 and relationships with habitat features explored using ordination and generalized linear mixed models (GLMMs). Based on ordination results, landscape-level gradients in salinity, turbidity, and elevation were associated with distinct fish assemblages among tidal lakes. Native fishes were associated with increased salinity and turbidity, and decreased elevation. Within tidal lakes, GLMM results demonstrated that submersed aquatic vegetation density was the dominant driver of individual fish species densities. Both native and non-native species were associated with submersed aquatic vegetation, although native and non-native fish populations only minimally overlapped. These results help to provide a framework for predicting fish species assemblages in novel or changing habitats as they indicate that species assemblages are driven by a combination of location within the estuarine gradient and site-specific habitat features.  相似文献   
912.
The sampling frequency of a digitized intermediate frequency signal has a strong effect on the measurement accuracy of Global Navigation Satellite System (GNSS) receivers. The delay-locked loop tracking error is significant when the sampling frequency is an integer multiple of the code chipping rate, the so-called commensurate sampling frequency, and the number of distinct instantaneous residual code phases is low. This results in distortions of the correlation shape and discriminator functions that lead to a significant accuracy degradation. These effects are most pronounced when the sampling frequency is low. Notwithstanding, it is generally good for receivers to keep the sampling frequency to a minimum owing to the processing load and power consumption. It creates a challenge for existing GNSS signal processing techniques. Random, sine and sawtooth jitters have been found to mitigate these distortions considerably. A software algorithm and two hardware receiver implementations of these solutions are proposed. A register-based architecture can be directly applied to the conventional receiver architecture, while the increase in resource and power consumption is insignificant. A RAM-based design cannot only considerably minimize utilized resources but also slightly reduce the power consumption compared to the conventional architecture.  相似文献   
913.
Newly emerged landscapes above sea level are characterized by rapidly evolving geomorphic systems where the initial fluvial pattern adapts to a former submarine topography. Such an early formed fluvial system establishes drainage basins and unstable landforms that characterize high topographic asymmetry which are prone to fast removal or reorganization. Transitional landscapes might form depositional systems as lakes or ponds that subsequently are incised, captured and incorporated into drainage basins. In this study we focus on the recently emerged Hengchun Peninsula to survey its paleoenvironment evolution. Three drillings performed in the Gangkou basin with fieldwork revealed several indicators that reconstructed stages of the landscape reorganization. The major finding shows an ephemeral large lake in the central part of the Hengchun Peninsula that was drained to the Pacific c. 6000 bp . The lake belonged to an ephemeral lakeland that was created after the emergence of the peninsula. Currently, several areas as relict landforms indicate this stage of topography evolution that through high rates of incision and subsequent captures, transforms into drainage basins. Furthermore, two drillings show brackish waters at the present estuary of the Gangkou basin. These two different paleoenvironments today build one system – Gangkou catchment. Long-term uplift rates show that a hanging wall of the Hengchun Fault plays a significant role in the creation of a lakeland by tilting the peninsula's surface. The tilt impacts on asymmetrical emergence of the peninsula and catchment development. Our study shows that a new geomorphic system might create depositional ephemeral landforms (lakes) that represent phases of early topography evolution after emergence above a sea level that are subjected to instantaneous rearrangement and evolves through large-scale phases before it reaches a topographic steady-state.  相似文献   
914.
Understanding catchment functioning is increasingly important to enable water resources to be quantified and used sustainably, flood risk to be minimized, as well as to protect the system from degradation by pollution. Developing conceptual understanding of groundwater systems and their encapsulation in models is an important part of this understanding, but they are resource intensive to create and calibrate. The relative lack of data or the particular complexity of a groundwater system can prevent the development of a satisfactory conceptual understanding of the hydrological behaviour, which can be used to construct an adequate distributed model. A time series of daily groundwater levels from the Permo-Triassic sandstones situated in the River Eden Valley, Cumbria, UK have been analysed. These hydrographs show a range of behaviours and therefore have previously been studied using statistical and time series analysis techniques. This paper describes the application of AquiMOD, impulse response function (IRF) and combined AquiMOD-IRF methods to characterize the daily groundwater hydrographs. The best approach for each characteristic type of response has been determined and related to the geological and hydrogeological framework found at each borehole location. It is clear that AquiMOD, IRF and a combination of AquiMOD with IRF can be deployed to reproduce hydrograph responses in a range of hydrogeological settings. Importantly the choice of different techniques demonstrates the influence of differing processes and hydrogeological settings. Further they can distinguish the influences of differing hydrogeological environments and the impacts these have on the groundwater flow processes. They can be used, as shown in this paper, in a staged approach to help develop reliable and comprehensive conceptual models of groundwater flow. This can then be used as a solid basis for the development of distributed models, particularly as the latter are resource expensive to build and to calibrate effectively. This approach of using simple models and techniques first identifies specific aspects of catchment functioning, for example influence of the river, that can be later tested in a distributed model.  相似文献   
915.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
916.
We challenge the notion of steady‐state equilibrium in the context of progressive cliff retreat on micro‐tidal coasts. Ocean waves break at or close to the abrupt seaward edge of near‐horizontal shore platforms and then rapidly lose height due to turbulence and friction. Conceptual models assume that wave height decays exponentially with distance from the platform edge, and that the platform edge does not erode under stable sea‐level. These assumptions combine to a steady‐state view of Holocene cliff retreat. We argue that this model is not generally applicable. Recent data show that: (1) exponential decay in wave height is not the most appropriate conceptual model of wave decay; (2) by solely considering wave energy at gravity wave frequencies the steady‐state model neglects a possible formative role for infragravity waves. Here we draw attention to possible mechanisms through which infragravity waves may drive cliff retreat over much greater distances (and longer timescales) than imaginable under the established conceptual model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
917.
Accelerating rates of volcano-tectonic (VT) earthquakes are commonly observed during volcanic unrest. Understanding the repeatability of their behaviour is essential to evaluating their potential to forecast eruptions. Quantitative eruption forecasts have focused on changes in precursors over intervals of weeks or less. Previous studies at basaltic volcanoes in frequent eruption, such as Kilauea in Hawaii and Piton de La Fournaise on Réunion, suggest that VT earthquake rates tend to follow a power-law acceleration with time about 2 weeks before eruption, but that this trend is often obscured by random fluctuations (or noise) in VT earthquake rate. These previous studies used a stacking procedure, in which precursory sequences for several eruptions are combined to enhance the signal from an underlying acceleration in VT earthquake rate. Such analyses assume a common precursory trend for all eruptions. This assumption is tested here for the 57 eruptions and intrusions recorded at Kilauea between 1959 and 1984. Applying rigorous criteria for selecting data (e.g. maximum depth; restricting magnitudes to be greater than the completeness magnitude, 2.1), we find a much less pronounced increase in the aggregate rate of earthquakes than previously reported. The stacked trend is also strongly controlled by the behaviour of one particular pre-eruptive sequence. In contrast, a robust signal emerges among stacked VT earthquake rates for a subset of the eruptions and intrusions. The results are consistent with two different precursory styles at Kilauea: (1) a small proportion of eruptions and intrusions that are preceded by accelerating rates of VT earthquakes over intervals of weeks to months and (2) a much larger number of eruptions that show no consistent increase until a few hours beforehand. The results also confirm the importance of testing precursory trends against data that have been filtered according to simple constraints on the spatial distribution and completeness magnitude of the VT earthquakes.  相似文献   
918.
Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.  相似文献   
919.
Two-dimensional (2D) and three-dimensional (3D) hydrodynamic models are used to simulate the hurricane-induced storm surge and coastal inundation in regions with vegetation. Typically, 2D storm surge models use an enhanced Manning coefficient while 3D storm surge models use a roughness height to represent the effects of coastal vegetation on flow. This paper presents a 3D storm surge model which accurately resolves the effects of vegetation on the flow and turbulence. First, a vegetation-resolving 1DV Turbulent Kinetic Energy model (TKEM) is introduced and validated with laboratory data. This model is both robust enough to accurately model flows in complex canopies, while compact and efficient enough for incorporation into a 3D storm surge-wave modeling system: Curvilinear Hydrodynamics in 3D-Surface WAves Nearshore (CH3D-SWAN). Using the 3D vegetation-resolving model, three numerical experiments are conducted. In the first experiment, comparisons are made between the 2D Manning coefficient approach and the 3D vegetation-resolving approach for simple wind-driven flow. In a second experiment, 2D and 3D representations of vegetation produce similar inundations from the same hurricane forcing, but differences in momentum are found. In a final experiment, varying inundation between seemingly analogous 2D and 3D representations of vegetation are demonstrated, pointing to a significant scientific need for data within wetlands during storm surge events. This study shows that the complex flow structures within vegetation canopies can be accurately simulated using a vegetation-resolving 3D storm surge model, which can be used to assess the feasibility for future wetland restoration projects.  相似文献   
920.
We believe the hypothesis presented by Maier et al. (Miner Deposita 48:1–56, 2012) for the formation of the various ore bodies in the Bushveld Complex to be overly simplistic, and we raise concerns that some of our work, used in support of this hypothesis, has been misrepresented. The formation of both diverse metalliferous layers (platinum-group element (PGE) reefs and Ti-magnetite layers) and some discordant (pipe) ore deposits has been ascribed by Maier et al. to the single unifying process of hydrodynamic sorting. The problem faced by authors of universal hypotheses for the Bushveld Complex is the sheer size and complexity of the intrusion. We disagree with many aspects of the overall Maier et al. model and have also identified several minor errors on maps and photographs, although some of these do not have a material effect on the model. The nature and origin of the layering is, however, too complex a topic to deal with in the context of this commentary, and we restrict ourselves to noting that our preferred hypothesis, namely the incremental buildup of layering from numerous episodes of replenishment, by different magma lineages, is consistent with field relationships. Our hypothesis for the origin of the ultramafic-hosted PGE-rich reefs, i.e., lateral mixing, is applicable to economically mineralized reefs (Mitchell and Scoon, Econ Geol 102:971–1009, 2007) and poorly mineralized layers such as the Pseudoreef harzburgite (Scoon and De Klerk, Canad Mineral 25:51–77, 1987) and the chromitite layers below the UG2 (Scoon and Teigler, Econ Geol 89:1094–1121, 1994).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号