首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   19篇
  国内免费   4篇
测绘学   7篇
大气科学   25篇
地球物理   67篇
地质学   123篇
海洋学   36篇
天文学   39篇
综合类   1篇
自然地理   32篇
  2024年   1篇
  2022年   5篇
  2021年   3篇
  2020年   10篇
  2019年   8篇
  2018年   11篇
  2017年   14篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   22篇
  2012年   22篇
  2011年   34篇
  2010年   16篇
  2009年   22篇
  2008年   27篇
  2007年   11篇
  2006年   11篇
  2005年   7篇
  2004年   13篇
  2003年   12篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有330条查询结果,搜索用时 31 毫秒
321.
The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar.  相似文献   
322.
This article presents findings of a study that explored how culture influenced support for wildfire mitigation in Peavine Métis Settlement, an Aboriginal community located in Alberta, Canada. Community-based research was completed using interviews, focus groups, and participant observation. The results show that cultural factors appeared to influence wildfire mitigation preferences. Participants indicated the current state of the forest was not natural, and that mitigation activities would likely improve forest health. Participants supported Settlement Council-led wildfire mitigation activities at both the residential and community level due to a preference for communal action and collective problem solving. Participants also were found to distrust “outsiders” and preferred programs developed by members of their own community. The results of this study show that wildfire mitigation programs based on local culture can be well supported in an Aboriginal community.  相似文献   
323.
An objective of many ecological restoration projects is to establish resilience to disturbances. Eelgrass (Zostera marina L.) represents a useful model to evaluate resilience because the plant community is dominated by one species and the estuarine environment is dynamic. Our studies of planted and reference plots used shoot density monitoring data from three projects spanning 3 to 12 years. Data show that eelgrass can recover from major shifts in pond position and shape on sandflats, as well as natural disturbances causing >20-fold change in density. However, cumulative effects of multiple stressors on unestablished plantings suggest algal blooms of unusual magnitude can tip normally marginal conditions to unfavorable. Thus, potential resilience appears to depend on landscape conditions. A dynamic equilibrium was evinced in even the deepest, lowest-density plantings, probably associated with light-mediated carrying capacity and vegetative belowground production characteristic of the Pacific Northwest. We recommend eight resilience-related planning elements to reduce uncertainties in eelgrass restoration.  相似文献   
324.
Abstract– Evaporation rates of K2O, Na2O, and FeO from chondrule‐like liquids and the associated potassium isotopic fractionation of the evaporation residues were measured to help understand the processes and conditions that affected the chemical and isotopic compositions of olivine‐rich type IA and type IIA chondrules from Semarkona. Both types of chondrules show evidence of having been significantly or totally molten. However, these chondrules do not have large or systematic potassium isotopic fractionation of the sort found in the laboratory evaporation experiments. The experimental results reported here provide new data regarding the evaporation kinetics of sodium and potassium from a chondrule‐like melt and the potassium isotopic fractionation of evaporation residues run under various conditions ranging from high vacuum to pressures of one bar of H2+CO2, or H2, or helium. The lack of systematic isotopic fractionation of potassium in the type IIA and type IA chondrules compared with what is found in the vacuum and one‐bar evaporation residues is interpreted as indicating that they evolved in a partially closed system where the residence time of the surrounding gas was sufficiently long for it to have become saturated in the evaporating species and for isotopic equilibration between the gas and the melt. A diffusion couple experiment juxtaposing chondrule‐like melts with different potassium concentrations showed that the diffusivity of potassium is sufficiently fast at liquidus temperatures (DK > 2 × 10?4cm2 s?1 at 1650 °C) that diffusion‐limited evaporation cannot explain why, despite their having been molten, the type IIA and type IA chondrules show no systematic potassium isotopic fractionation.  相似文献   
325.
Abstract– To better determine the effects of impact‐related processes on radiometric chronometers in meteorites, we undertook an isotopic study of experimentally shocked and heated samples of lunar basalt 10017. Shock experiments at 55 GPa were completed on one subsample, and a second subsample was heated in an evacuated quartz tube at 1000 °C for 170 h. A third subsample was maintained as a control. Samarium‐neodymium, Rb‐Sr, 238U‐206Pb, and 206Pb‐207Pb isotopic analyses were completed on mineral fractions (leached and unleached), leached whole rocks, and complementary acid leachates. Disturbance in the shocked and heated samples was evaluated through comparison of their isochron diagrams with those of the control sample. The Sm‐Nd isotope system was the least disturbed, the Rb‐Sr isotope system was more disturbed, and the 238U‐206Pb and 206Pb‐207Pb isotope systems were the most disturbed by shock and annealing. Samples that experienced extended heating demonstrated greater isotopic disturbances than shocked samples. In some cases, the true crystallization age was preserved, and in others, age information was degraded or destroyed. In no case did the experiments generate isochrons that maintained linearity while being rotated or completely reset. Although our results show that neither experimental shock nor thermal metamorphism alone can account for the discordant ages represented by different isotope systems in some Martian meteorites, we postulate that shock metamorphism may render a meteorite more susceptible than its unshocked counterpart to subsequent disturbance during extended impact‐related heating or aqueous alteration. The combination of these processes may result in the disparate chronometric information preserved in some meteorites.  相似文献   
326.
The seasonal mean extra-tropical atmospheric response to El Niño/Southern Oscillation (ENSO) is assessed in the historical and pre-industrial control CMIP5 simulations. This analysis considers two types of El Niño events, characterized by positive sea surface temperature (SST) anomalies in either the central equatorial Pacific (CP) or eastern equatorial Pacific (EP), as well as EP and CP La Niña events, characterized by negative SST anomalies in the same two regions. Seasonal mean geopotential height anomalies in key regions typify the magnitude and structure of the disruption of the Walker circulation cell in the tropical Pacific, upper tropospheric ENSO teleconnections and the polar stratospheric response. In the CMIP5 ensembles, the magnitude of the Walker cell disruption is correlated with the strength of the mid-latitude responses in the upper troposphere i.e., the North Pacific and South Pacific lows strengthen during El Niño events. The simulated responses to El Niño and La Niña have opposite sign. The seasonal mean extra-tropical, upper tropospheric responses to EP and CP events are indistinguishable. The ENSO responses in the MERRA reanalysis lie within the model scatter of the historical simulations. Similar responses are simulated in the pre-industrial and historical CMIP5 simulations. Overall, there is a weak correlation between the strength of the tropical response to ENSO and the strength of the polar stratospheric response. ENSO-related polar stratospheric variability is best simulated in the “high-top” subset of models with a well-resolved stratosphere.  相似文献   
327.
The global heat balance: heat transports in the atmosphere and ocean   总被引:10,自引:0,他引:10  
The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m–2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30°N. Comparable values are achieved in the Pacific at 20°N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20°S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.  相似文献   
328.
The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest's key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal Oscillation, tend to be associated with below-average snowpack, streamflow, and flood risk, below-average salmon survival, below-average forest growth, and above-average risk of forest fire. During the 20th century, the region experienced a warming of 0.8 °C. Using output from eight climate models, we project a further warming of 0.5–2.5 °C (central estimate 1.5 °C) by the 2020s, 1.5–3.2°C (2.3 °C) by the 2040s, and an increase in precipitation except in summer. The foremost impact of a warming climate will be the reduction of regional snowpack, which presently supplies water for ecosystems and human uses during the dry summers. Our understanding of past climate also illustrates the responses of human management systems to climatic stresses, and suggests that a warming of the rate projected would pose significant challenges to the management of natural resources. Resource managers and planners currently have few plans for adapting to or mitigating the ecological and economic effects of climatic change.  相似文献   
329.
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号