首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   13篇
  国内免费   2篇
测绘学   17篇
大气科学   8篇
地球物理   63篇
地质学   93篇
海洋学   10篇
天文学   20篇
综合类   2篇
自然地理   19篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   20篇
  2017年   20篇
  2016年   25篇
  2015年   7篇
  2014年   24篇
  2013年   16篇
  2012年   17篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1991年   2篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1970年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
61.
With the ubiquity of advanced web technologies and location-sensing hand held devices, citizens regardless of their knowledge or expertise, are able to produce spatial information. This phenomenon is known as volunteered geographic information (VGI). During the past decade VGI has been used as a data source supporting a wide range of services, such as environmental monitoring, events reporting, human movement analysis, disaster management, etc. However, these volunteer-contributed data also come with varying quality. Reasons for this are: data is produced by heterogeneous contributors, using various technologies and tools, having different level of details and precision, serving heterogeneous purposes, and a lack of gatekeepers. Crowd-sourcing, social, and geographic approaches have been proposed and later followed to develop appropriate methods to assess the quality measures and indicators of VGI. In this article, we review various quality measures and indicators for selected types of VGI and existing quality assessment methods. As an outcome, the article presents a classification of VGI with current methods utilized to assess the quality of selected types of VGI. Through these findings, we introduce data mining as an additional approach for quality handling in VGI.  相似文献   
62.
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.  相似文献   
63.
We have constructed a chemical reaction model in a contracting interstellar cloud including 104 species which are involved in a network of 557 reactions. The chemical kinetic equations were integrated as a function of time by using gear package. The evolution of the system was followed in the density range 10–107 particles cm-3.The calculated fractional abundances of the charged species are in good agreement with those given by other investigators. The charge density has been followed in diffuse, intermediate and dense regions. The most dominant ionic species are metallic ions, HCO+ and H 3 + in the shielded regions and atomic ions H+, C+, Si+, He+, S+ and metal ions in the diffuse and intermediate regions. The abundances of negatively charged ions were found to be negligible. The results of the calculations on the different metallic ions are interpreted.  相似文献   
64.
The evolution of the different chemical species are followed in a model of contracting interstellar cloud. The central density increases from n = 10 cm–3 diffuse initial cloud model to a dense cloud with central density number of n >- 105 cm–3 after a time of 1.2 × 107 yr. A network of 622 reactions has been involved. The chemistry of the cloud is integrated simultaneously with the hydrodynamic equations of contraction.The results predict that the different molecular species increase in abundance as the contraction proceeds. The species which enhance significantly are CO, HCO, CS and NO. The fractional abundances of many of the other molecular species increase distinctly with contraction, e.g. CH, C2H, CN, SO2, CO2, H2O, C2, NH3, HCN, SO, OCS and SN. The transformation of the initial diffuse cloud model with small abundances of molecular species to a dense molecular cloud with enhancement of the different molecular species is confirmed. The results predict good agreements of our results with both the observations and other theoretical studies.  相似文献   
65.
Quantification of leakage is very important in the selection and design of the remediation systems of leaky aquifers that receive contaminated leakage. This is an approach for the calculation of leakage using only two slopes of time-drawdown data. These slopes represent before and after the start of leakage, and are applied to four examples. Results generally agree with those determined by the Hantush approach. Comparison of the two approaches, however, shows that the Hantush approach quantifies leakage using three aquifer parameters (transmissivity, storativity, and leakage factor), the value of which depend on the pumping test method used; it assumes constant hydraulic head in the aquifer supplying leakage, which may not be valid under field conditions; and it ignores differences between the viscosities of the leakage water and the aquifer water, which influence the leakage rate. The proposed approach is free from all three limitations.  相似文献   
66.
With the advent of satellite altimetry in 1973, new scientific applications became available in oceanography, climatology, and marine geosciences. Moreover, satellite altimetry provides a significant source of information facilitated in the geoid determination with a high accuracy and spatial resolution. The information from this approach is a sufficient alternate for marine gravity data in the high-frequency modeling of the marine gravity field quantities. The gravity gradient tensor, consisting of the second-order partial derivatives of the gravity potential, provides more localized information than gravity measurements. Marine gravity observations always carry a high noise level due to environmental effects. Moreover, it is not possible to model the high frequencies of the Earth's gravity field in a global scale using these observations. In this article, we introduce a novel approach for a determination of the gravity gradient tensor at sea level using satellite altimetry. Two numerical techniques are applied and compared for this purpose. In particular, we facilitate the radial basis functions (RBFs) and the harmonic splines. As a case study, the gravitational gradient tensor is determined and results presented in the Persian Gulf. Validation of results reveals that the solution of the harmonic spline approach has a better agreement with a theoretical zero-value of the trace of the Marussi gravitational gradient tensor. However, the data-adaptive technique in the RBF approach allows more efficient selection of the parameters and 3-D configuration of RBFs compared to a fixed parameterization by the harmonic splines.  相似文献   
67.
68.
69.
This study investigates the effect of nonlinear inertia on the dynamic response of an asymmetric building equipped with Tuned Mass Dampers (TMDs). In the field of structural engineering, many researchers have developed models to study the behavior of nonlinear TMDs, but the effect of nonlinear inertia has not received as much attention for asymmetric buildings. To consider nonlinear inertia, the equations of motion are derived in a local rotary coordinates system. The displacements and rotations of the modeled building and TMDs are defined by five-degree-of-freedom (5-DOFs). The equations of motion are derived by using the Lagrangian method. Also in the proposed nonlinear model, the equations of motion are different from a conventional linear model. In order to compare the response of the proposed nonlinear model and a conventional linear model, numerical examples are presented and the response of the modeled buildings are derived under harmonic and earthquake excitations. It is shown that if the nonlinear inertia is considered, the response of the modeled structures changes and the conventional linear approach cannot adequately model the dynamic behavior of the asymmetric buildings which are equipped with TMDs.  相似文献   
70.
Active geological and young faulted zones have made Iran’s territory one of the most seismological active areas in the world according to recent historical earthquakes. Some of the deadliest earthquakes such as Gilan 1990 and Kermanshah 2018 caused tens of thousands fatalities. If such violent earthquakes affect strategical structures of a country, indirect losses would be more concerning than direct losses. Nowadays there is no doubt about the vital role of tunnels and underground structures in urban areas. These facilities serve as nonstop functional structures for human transportation, water and sewage systems and underground pedestrian ways. Any external hazard subjected to underground spaces, such as earthquake could directly affect passenger’s lives and significantly decrease whole system reliability of public transportation. Commonly two earthquake levels of intensities, Maximum Design Earthquake (MDE) and Operating Design Earthquake (ODE) were used in seismic design of underground structures. However, uncertain nature of earthquakes in terms of frequency content, duration of strong ground motion, and level of intensity indicate that only the two levels of earthquake (ODE and MDE) cannot cover the all range of possible seismic responses of structures during a probable earthquake. It is important to evaluate the behavior of tunnel under a wide range of earthquake intensities. For this purpose, a practical risk-based approach which is obtained using the total probability rule was used. This study illustrates a framework for evaluation seismic stability of tunnels. Urban railway tunnels of Tehran, Shiraz, Ahwaz, Mashhad, Isfahan and Tabriz were considered as study cases. Nominal value of seismic risk for three main damage states, including minor, moderate and major were calculated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号