首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2468篇
  免费   106篇
  国内免费   57篇
测绘学   72篇
大气科学   169篇
地球物理   535篇
地质学   863篇
海洋学   171篇
天文学   594篇
综合类   13篇
自然地理   214篇
  2023年   16篇
  2021年   55篇
  2020年   48篇
  2019年   53篇
  2018年   98篇
  2017年   88篇
  2016年   97篇
  2015年   89篇
  2014年   99篇
  2013年   147篇
  2012年   84篇
  2011年   139篇
  2010年   105篇
  2009年   120篇
  2008年   121篇
  2007年   115篇
  2006年   106篇
  2005年   89篇
  2004年   82篇
  2003年   70篇
  2002年   59篇
  2001年   55篇
  2000年   54篇
  1999年   46篇
  1998年   44篇
  1997年   28篇
  1996年   27篇
  1995年   17篇
  1994年   20篇
  1993年   18篇
  1992年   27篇
  1991年   16篇
  1990年   19篇
  1989年   11篇
  1988年   12篇
  1987年   14篇
  1986年   13篇
  1985年   21篇
  1984年   24篇
  1983年   30篇
  1982年   14篇
  1981年   21篇
  1980年   22篇
  1979年   24篇
  1978年   27篇
  1977年   27篇
  1976年   17篇
  1975年   11篇
  1974年   12篇
  1973年   15篇
排序方式: 共有2631条查询结果,搜索用时 31 毫秒
21.
22.
23.
Zusammenfassung In den folgenden Ausführungen werden Daten über die Geschwindigkeit der Bewegung von Schubdecken in der Hauptbewegungsphase geliefert. Die hierfür verwendeten Beispiele stammen aus den Ostalpen und Westkarpaten. Eine sichere Geschwindigkeits-Bestimmung ist derzeit noch nicht durchführbar. Es können aber Minimalbewegungswerte von etwa 1,5 mm/Jahr errechnet werden. Die reale Transportgeschwindigkeit könnte auch wesentlich höher liegen, vielleicht bei 10–20 mm/Jahr.
This paper presents facts pertaining to the velocity of the overthrust of nappes during a tectonical phase by means of examples from the Eastern Alps and the Western Carpathians. An exact determination of this velocity is still not possible. One can calculate minimum values of near 1,5 mm/year. The real velocity of the overthrusts of nappes might be much higher, perhaps 10–20 mm/year.

Résumé L'article expose des données sur la vitesse des mouvements des nappes de charriage pendant la phase principale de transport. Les exemples présentés proviennent des Alpes orientales et des Carpathes occidentales. Il n'est pas possible jusqu'à présent de faire une détermination plus exacte de cette vitesse. Mais on peut calculer un minimum de transport d'environ 1,5 mm/an. La vitesse réelle des mouvements de translation pourrait même être nettement plus élevée, et atteindre peut-être 10–20 mm/ an.

. . . 1,5 /. , 10–20 /.
  相似文献   
24.
Nindos  Alexander  Zirin  Harold 《Solar physics》1998,179(2):253-268
We studied quantitatively the relation between the intensity of Caii K-line bright features and the intensity of the associated magnetic elements using two data sets obtained at the Big Bear Solar Observatory. Both network and intranetwork (IN) structures were considered. Magnetic field changes always affected the K-line emission; for example, the appearance of new bipoles was always followed by enhanced K-line emission. There is an almost linear correlation between the K-line intensity and the magnetic field strength of the stronger network elements (elements with absolute field strength higher than 11–19.5 G). We identified two classes of intranetwork K-line elements: magnetic and non-magnetic ones. The number of the magnetic K-line IN elements above a 1-sigma threshold was only 5%–10% of the number of the non-magnetic ones. The magnetic K-line IN elements were almost 3 to 4 times brighter compared to the non-magnetic elements. On the other hand, the non-magnetic elements were moving with typical velocities of 35–40 km s–1 while the velocities of the magnetic K-line elements were of the order of 1 km s–1.  相似文献   
25.
The Weather Research and Forecasting (WRF) model was compared with daily surface observations to verify the accuracy of the WRF model in forecasting surface temperature, pressure, precipitation, wind speed, and direction. Daily forecasts for the following two days were produced at nine locations across southern Alberta, Canada. Model output was verified using station observations to determine the differences in forecast accuracy for each season.

Although there were seasonal differences in the WRF model, the summer season forecasts generally had the greatest accuracy, determined by the lowest root mean square errors, whereas the winter season forecasts were the least accurate. The WRF model generally produced skillful forecasts throughout the year although with a smaller diurnal temperature range than observed. The WRF model forecast the prevailing wind direction more accurately than other directions, but it tended to slightly overestimate precipitation amounts. A sensitivity analysis consisting of three microphysics schemes showed relatively minor differences between simulated precipitation as well as 2?m surface temperatures.  相似文献   
26.
Sediment is fractionated by size during its cascade from source to sink in sediment routing systems. It is anticipated, therefore, that the grain size distribution of sediment will undergo down‐system changes as a result of fluvial sorting processes and selective deposition. We assess this hypothesis by comparing grain size statistical properties of samples from within the erosional source region with those that have undergone different amounts of transport. A truncated Pareto distribution describes well the coarser half of the clast size distribution of regolith, coarse channel bed sediment and proximal debris flows (particularly their levees), as well as the coarser half of the clast size distribution of gravels that have undergone considerable amounts of transport in rivers. The Pareto shape parameter a evolves in response to mobilization, sediment transport and, importantly, the selective extraction of particles from the surface flow to build underlying stratigraphy. A goodness of fit statistic, the Kolmogorov–Smirnov vertical difference, illustrates the closeness of the observed clast size distributions to the Pareto, Weibull and log‐normal models as a function of distance from the depositional apex. The goodness of fit of the particle size distribution of regolith varies with bedrock geology. Bedload sediment at catchment outlets is fitted well by the log‐normal and truncated Pareto models, whereas the exponential Weibull model provides a less good fit. In the Eocene Escanilla palaeo‐sediment routing system of the south‐central Pyrenees, the log‐normal and truncated Pareto models provide excellent fits for distances of up to 80 km from the depositional apex, whereas the Weibull fit progressively worsens with increasing transport distance. A similar trend is found in the Miocene–Pliocene gravels of the Nebraskan Great Plains over a distance of >300 km. Despite the large fractionation in mean grain size and gravel percentage from source region to depositional sink, particle size distributions therefore appear to maintain log‐normality over a wide range of transport distance. Use of statistical models enables down‐system fractionation of sediment released from source regions to be better understood and predicted and is a potentially valuable tool in source‐to‐sink approaches to basin analysis.  相似文献   
27.
To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater chemistry, even in relatively simple aquifers, may be complicated by solute contributions from “exotic” accessory minerals such as glauconite. To detect such peculiarities, groundwater studies should combine the study of elemental concentration and isotopic composition of several solutes that show different geochemical behavior.  相似文献   
28.
29.
The main reasons for a breach of trouble-free operation of the subgrade are the different kinds of deformation, such as train load impact on subgrade surface, loss of stability to subgrade slope, weight of embankment on the base, and partial or complete failure of the railway track due to frost heaving. This paper gives a summary of deformation analysis methods being developed in Russia to estimate the operating conditions of the railway subgrade.  相似文献   
30.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号