首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   41篇
  国内免费   12篇
测绘学   29篇
大气科学   77篇
地球物理   171篇
地质学   271篇
海洋学   89篇
天文学   112篇
综合类   1篇
自然地理   61篇
  2023年   5篇
  2022年   8篇
  2021年   11篇
  2020年   12篇
  2019年   16篇
  2018年   24篇
  2017年   24篇
  2016年   41篇
  2015年   26篇
  2014年   35篇
  2013年   57篇
  2012年   28篇
  2011年   46篇
  2010年   31篇
  2009年   57篇
  2008年   31篇
  2007年   42篇
  2006年   41篇
  2005年   25篇
  2004年   22篇
  2003年   18篇
  2002年   14篇
  2001年   8篇
  2000年   11篇
  1999年   11篇
  1998年   9篇
  1997年   15篇
  1996年   13篇
  1995年   12篇
  1994年   6篇
  1993年   3篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1978年   3篇
  1976年   5篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1968年   2篇
排序方式: 共有811条查询结果,搜索用时 15 毫秒
21.
We investigate the thermo-mechanical properties beneath the young orogenic belt of Taiwan by constructing a shear strength profile from a vertical stratified rheological structure. The stratified rheological structure is estimated based on the recently developed thermal structure and its likely composition. Subduction–collision in the young orogenic belts and the thick accretionary wedge make a significant contribution to the growth of sialic crust in the hinterland. The sialic bulk crust not only results in a low seismic velocity but also produces weak crust in the hinterland. The earthquake depth–frequency distribution in the foreland and hinterland correlates very well with the regimes of the brittle/ductile transition revealed in the strength profile. Our results show that the observed two-layer seismicity in the foreland is due to a moderate geotherm and an intermediate mafic bulk composition; while single-layer seismicity in the hinterland is due to its felsic bulk composition. In the foreland, the mechanically strong crust (MSC) and the mechanically strong lithosphere (MSL) coincide with frequent seismicity. The shallow MSC in the hinterland is consistent with the 20- to 25-km seismicity occurring there. The total lithospheric integrated strength (LIS) in the hinterland is only about half of that in the foreland, suggesting a weak lower crust and lithosphere mantle in the hinterland. The results confirm that the earthquake cutoff depth is a proxy for temperature. The calculated decrease of effective elastic thickness (EET) from the orogenic margin (foreland) to the center (hinterland) is consistent with the results of flexure modeling in most orogenic belts. Due to the weak LIS in the hinterland, crustal thinning and rifting may occur in the future. Our results, thus, suggest that the mechanical structure is also closely related to the composition and is not directly reflected in the thermal structure.  相似文献   
22.
23.
Stepwise dissolutions of the carbonaceous chondrites Orgueil (CI), Murchison (CM) and Allende (CV) reveal large nucleosynthetic anomalies for Zr isotopes that contrast with the uniform compositions found in bulk meteorites. Two complementary nucleosynthetic components are observed: one enriched and one depleted in s-process nuclides. The latter component, characterized by excess 96Zr, is most distinctive in the acetic acid leachate (up to ε96Zr ≈ 50). The excess decreases with increasing acid strength and the final leaching steps of the experiment are depleted in 96Zr and thus enriched in s-process nuclides. Presolar silicon carbide grains are likely host phases for part of the anomalous Zr released during these later stages. However, by mass balance they cannot account for the 96Zr excesses observed in the early leaching steps and this therefore hints at the presence of at least one additional carrier phase with significant amounts of anomalous Zr. The data provide evidence that average solar system material consists of a homogenized mixture of different nucleosynthetic components, which can be partly resolved by leaching experiments of carbonaceous chondrites.  相似文献   
24.
25.
The Tibetan plateau is host to numerous ~N‐S striking graben that have accommodated E‐W directed extension. The development of these structures has been interpreted to reflect a variety of different geological processes including plateau collapse, oroclinal bending or mid‐to‐lower crustal flow. New 40Ar/39Ar thermochronology and quartz c‐axis data from the Thakkhola graben of west‐central Nepal show that E‐W extension was ongoing at least locally by the early Miocene (ca. 17 Ma). Our new, and previously published chronologic information on the initiation of graben across the orogen shows that they typically developed immediately after cessation of the South Tibetan detachment system, a structural network that facilitated differential southward movement of the upper and middle crust. We interpret this fundamental switch in orogen kinematics to reflect recoupling of the middle and upper Himalayan crust such that the subsequent widespread flow of the mid‐to‐lower crust out of the system to the east forced brittle accommodation in the upper crust.  相似文献   
26.
Algae is an informal term used to describe a broad group of simple organisms from the plant kingdom. The organisms included within this grouping are aquatic photosynthetic biota with an extensive range of life habits and forms. These organisms range from micron-sized unicellular forms to giant seaweeds and kelps, which can grow to several metres long. Both benthic and planktonic modes of life are known and display a wide variety of life cycles.  相似文献   
27.
28.
Whilst all ecosystems must obey the second law of thermodynamics, these physical bounds and controls on ecosystem evolution and development are largely ignored across the ecohydrological literature. To unravel the importance of these underlying restraints on ecosystem form and function, and their power to inform our scientific understanding, we have calculated the entropy budget of a range of peat ecosystems. We hypothesize that less disturbed peatlands are ‘near equilibrium’ with respect to the second law of thermodynamics and thus respond to change by minimizing entropy production. This ‘near equilibrium’ state is best achieved by limiting evaporative losses. Alternatively, peatlands ‘far-from-equilibrium’ respond to a change in energy inputs by maximizing entropy production which is best achieved by increasing evapotranspiration. To test these alternatives this study examined the energy balance time series from seven peatlands across a disturbance gradient. We estimate the entropy budgets for each and determine how a change in net radiation (ΔRn) was transferred to a change in latent heat flux (ΔλE). The study showed that: (i) The transfer of net radiation to latent heat differed significantly between peatlands. One group transferred up to 64% of the change in net radiation to a change in latent heat flux, while the second transferred as little as 27%. (ii) Sites that transferred the most energy to latent heat flux were those that produced the greatest entropy. The study shows that an ecosystem could be ‘near equilibrium’ rather than ‘far from equilibrium’.  相似文献   
29.
The geology of the Snowdonia National Park in North Wales comprises a mixture of Lower Palaeozoic shallow marine sediments, acidic igneous rocks and basic intrusions of the Welsh Basin that were subsequently deformed during the Caledonian Orogeny. Thin igneous intrusions are challenging to map due to variable surface exposures, their intrusive origin, structural deformation and burial by glacial sediments. This study used a combination of traditional geological techniques, near‐surface geophysical surveys and remote sensing to detect and map a buried dolerite sheet intrusion. Both simple and mathematical analysis of magnetic anomalies and numerical modelling allowed the dolerite position, depths and target widths to be determined. Results showed that calibrated magnetic surveys can characterize buried igneous bodies in such mountainous environments.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号