首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   23篇
  国内免费   4篇
测绘学   12篇
大气科学   31篇
地球物理   132篇
地质学   191篇
海洋学   22篇
天文学   137篇
综合类   1篇
自然地理   25篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   22篇
  2016年   36篇
  2015年   28篇
  2014年   36篇
  2013年   30篇
  2012年   29篇
  2011年   33篇
  2010年   26篇
  2009年   37篇
  2008年   34篇
  2007年   27篇
  2006年   22篇
  2005年   17篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1940年   2篇
  1939年   1篇
排序方式: 共有551条查询结果,搜索用时 15 毫秒
431.
Global warming alters the hydrological cycle since a rise in temperature leads to an increase in the moisture-holding capacity of the atmosphere at a rate of about 7 %/°C. This fact can influence the global, but also local characteristics of precipitation, such as total amount and intensity. Therefore, it is important to study changes in rainfall regime in regions with complex orography, like Tuscany, where there are strong spatial gradients in precipitation amounts. The aim of this study is to look for temporal change in precipitation from 1955 to 2007 searching for spatial differences. Daily data of 21 meteorological stations were analyzed to identify trends in seasonal and annual precipitation indices. Cluster analysis applied to principal components was applied to identify homogeneous groups of stations. A decrease in precipitation was observed at annual time scale, during winter and spring, especially in northwestern areas. Wet days highlighted a decrease in all of Tuscany, due to the same seasons. In northern Tuscany, the decrease in rainfall amount was mainly determined by a lower frequency of rainy events which in turn caused a decrease in the occurrence of extreme daily precipitation events (75th, 90th, and 95th percentile). In central-southern Tuscany, no significant changes were observed except for an increase in precipitation fraction, due to extreme events and in mean daily total amount for wet days. These results are consistent with recent findings for the Mediterranean area and confirm the usefulness of cluster analysis for the analysis of the spatial distribution of precipitation.  相似文献   
432.
The repetitive sedimentology of many Precambrian sheet‐dominated fluvial sandstones favoured their attribution to unconfined depositional processes. This article presents outcrop evidence for deep‐channelled drainage in the 1·9 Ga Burnside River Formation of Kilohigok Basin, Arctic Canada. On the ground, sheet‐like sandbodies with ubiquitous cross‐bedding are at first consistent with classic, unconfined depositional models. However, satellite and oblique‐aerial imagery of sections up to 15 km wide and 500 m thick reveals the occurrence of incised palaeovalleys hosting clustered, kilometre‐scale, channel bodies with attached large foreset bars pointing to downstream‐lateral accretion, sand sheets with aspect ratios (i.e. width to thickness) as high as 2500, and scattered aeolian intervals. The genetic association of these architectural elements points to aggradational fluvial piedmonts composed of low‐relief unit bars generated by braidplain channels several metres deep. Preservation of aeolianites was facilitated by fluctuating groundwater table and accommodation. Fluvial piedmonts were transected by weakly sinuous channel belts up to 25 m deep and characterized by through‐going or tributary planform. Aspect ratios comparable with those of late Palaeozoic to modern braided channels disprove the inference that all Precambrian streams readily widened in response to increased discharge. Previous facies models for large‐scale Precambrian sheet‐braided rivers failed to depict entire channel forms, possibly because they could not be resolved by ground‐based observations. Based on their limited geomorphic variability and abundance of architectural elements with very high aspect ratios, this study recommends that large sheet‐braided fluvial systems should still be considered separately from their post‐Silurian (i.e. vegetated) braided counterparts. Parallels between sheet‐braided and modern dryland rivers do not, however, reconcile with the deep, perennial, channelized processes described here. Yet, distal sand‐bed and perennial reaches of modern sandur plains remain the closest analogue to sheet‐braided rivers. This conjecture contradicts the assumption that all Precambrian rivers were prone to simulate seasonal behaviours independently from their actual climate regime.  相似文献   
433.
In order to monitor the Stromboli submarine slope after the 30 December 2002 landslide and tsunami, repeated marine surveys were carried out offshore of Sciara del Fuoco. The morphological changes and depositional processes that brought to the gradual filling of the slide scar have been studied in detail. Thirteen surveys in a period of little more than 4 years provided a unique opportunity to reconstruct the morpho-sedimentary evolution of the submarine slope and its recovery after the mass-wasting event. The scar has been progressively filled with lava and volcanoclastic debris; in the first month and a half, the filling rate was very high due to the entrance of lava flows into the sea and to the morphological readjustment of the slope; in the following months/years the rate dramatically decreased when the eruptive vents moved upwards and the eruption finally stopped. After 4 years (February 2007) more than 40% of the scar was already filled. In early 2007, a new eruption occurred and a lava delta was constructed in the 2002 scar, influencing the natural readjustment of the slope; therefore, our reconstruction only encompasses the period between the 2002 and 2007 eruptions.The swath bathymetry reconstruction of geometry and volume of scar filling during the period 2002–2007 evidenced a punctuated and fast shift of depocenters and debris emplacement through avalanching processes. This process quickly obliterated the features produced by the 2002 tsunamigenic landslide so that a major question about the preservation potential of mass-wasting features on active volcanic flanks emerges.  相似文献   
434.
Although general trends in transgressive to highstand sedimentary evolution of river‐mouth coastlines are well‐known, the details of the turnaround from retrogradational (typically estuarine) to aggradational–progradational (typically coastal/deltaic) stacking patterns are not fully resolved. This paper examines the middle to late Holocene eustatic highstand succession of the Po Delta: its stratigraphic architecture records a complex pattern of delta outbuilding and coastal progradation that followed eustatic stabilization, since around 7·7 cal kyr bp . Sedimentological, palaeoecological (benthic foraminifera, ostracods and molluscs) and compositional criteria were used to characterize depositional conditions and sediment‐dispersal pathways within a radiocarbon‐dated chronological framework. A three‐stage progradation history was reconstructed. First, as soon as eustasy stabilized (7·7 to 7·0 cal kyr bp ), rapid bay‐head delta progradation (ca 5 m year?1), fed mostly by the Po River, took place in a mixed, freshwater and brackish estuarine environment. Second, a dominantly aggradational parasequence set of beach‐barrier deposits in the lower highstand systems tract (7·0 to 2·0 cal kyr bp ) records the development of a shallow, wave‐dominated coastal system fed alongshore, with elongated, modestly crescent beaches (ca 2·5 m year?1). Third, in the last 2000 years, the development of faster accreting and more rapidly prograding (up to ca 15 m year?1) Po delta lobes occurred into 30 m deep waters (upper highstand systems tract). This study documents the close correspondence of sediment character with stratal distribution patterns within the highstand systems tract. Remarkable changes in sediment characteristics, palaeoenvironments and direction of sediment transport occur across a surface named the ‘A–P surface’. This surface demarcates a major shift from dominantly aggradational (lower highstand systems tract) to fully progradational (upper highstand systems tract) parasequence stacking. In the Po system, this surface also reflects evolution from a wave‐dominated to river‐dominated deltaic system. Identifying the A–P surface through detailed palaeoecological and compositional data can help guide interpretation of highstand systems tracts in the rock record, especially where facies assemblages and their characteristic geometries are difficult to discern from physical sedimentary structures alone.  相似文献   
435.
Biotic forcing on river meandering is a highly debated topic in sedimentology. Vegetation is assumed to hold a vital role on channel stability and sinuosity, for example through bank stabilization and pedogenic production of cohesive clays. However, statistically solid and causal relationships between vegetation density and river sinuosity remain largely untested in natural systems. This study investigates physical and biotic forcings on channel sinuosity in the Bonneville Basin of Utah (USA), an endorheic depression flanked by active fluvial networks (‘washes’) that display diverse vegetation density and channel‐planform style. By means of remote sensing and ground‐data collection, 58 washes are considered, 0·1 to 90 km2 in surface area and drained by trunk channels <45 m wide and <1·2 m deep. Each wash is composed of a catchment basin connected downstream to an aggradational and distributive channel network. Statistically solid regressions highlight the primary roles played by base level and catchment size on fluvial morphogenesis. In contrast, no correlation is found between vegetation density and other parameters such as trunk‐channel width or surface area of the largest meander in a wash. Similarly, no statistical correlation exists between vegetation density and meander size or sinuosity index. Rather, larger and more sinuous meanders are invariably associated with lower vegetation density. These results are corroborated by field evidence showing that sparse vegetation promotes flow disturbance, channel branching and bar braiding instead of stabilizing sediment surfaces. Thus, river meandering is attributed to cohesion offered by mud retention within the endorheic basin, as well as discharge and stream‐power modulation along bifurcating and low‐gradient channel reaches. Hence, this work demonstrates how meandering‐channel patterns may arise from entirely physical forcings in the absence of vegetation.  相似文献   
436.

The Callovo Oxfordian clay-rock (COx) is studied in France for the disposal of radioactive waste, because of its extremely low permeability. This host rock is governed by a hydromechanical coupling of high complexity. This paper presents an experimental study into the mechanisms of water uptake in small, unconfined, prismatic specimens of COx, motivated by the comprehension of cracking observed during concrete/COx interface sample preparation. Water uptake is monitored using both X-ray tomography and neutron radiography, the combination of these imaging techniques allowing material deformation and water arrival to be quantified, respectively. Given the speed of water entry and crack propagation, relatively fast imaging is required: 5-min X-ray tomographies and 10-s neutron radiographs are used. In this study, pairs of similar COx samples from the same core are tested separately with each imaging technique. Two different orientations with respect to the core are also investigated. Analysis of the resulting images yields with micro- and macro-scale insights into hydromechanical mechanisms to be obtained. This allows the cracking to be interpreted as a rapid breakdown in capillary suction (supposed large both to drying and rebound from in situ stress state) due to water arrival, which in turn causes a loss of effective stress, allowing cracks to propagate and deliver water further into the material.

  相似文献   
437.
This paper presents a new, improved, post‐earthquake damage assessment method that takes into account residual deformations attained by the damaged structure during the earthquake. Local and global residual deformations and visual damage indicators are considered to estimate the maximum deformations experienced by the structure. As a particular development, the method allows measured displacements and rotations to be considered jointly. Uncertainties associated with both the excitation and the damaged structure are explicitly accounted for. The resulting maximum displacement estimates allow a more accurate evaluation of the extent of structural damage when judging the usability/reparability of the investigated structure. A trial application of the method to a real structure tested on a shaking table is presented. The results confirm the capability of the method to estimate the maximum displacement and the residual stiffness of the damaged structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
438.
A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts revealed the timing and pattern of geomorphic changes and allowed calculation of sediment deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, Malamocco and Chioggia.  相似文献   
439.
We develop new approaches to calculating 30-year probabilities for occurrence of moderate-to-large earthquakes in Italy. Geodetic techniques and finite-element modelling, aimed to reproduce a large amount of neotectonic data using thin-shell finite element, are used to separately calculate the expected seismicity rates inside seismogenic areas (polygons containing mapped faults and/or suspected or modelled faults). Thirty-year earthquake probabilities obtained from the two approaches show similarities in most of Italy: the largest probabilities are found in the southern Apennines, where they reach values between 10% and 20% for earthquakes of M W ≥ 6.0, and lower than 10% for events with an M W ≥ 6.5.  相似文献   
440.
Archaeoseismology can provide a useful chronological tool for constraining earthquakes and documenting significant evidence that would otherwise be lost. In this paper, we report a case of surface faulting on ancient man-made structures belonging to the archaeological site of Santa Venera al Pozzo situated along the eastern flank of Mt. Etna volcano in eastern Sicily (southern Italy), which is affected by well-developed tectonic faults. Geological surveys highlight a set of fractures affecting the archaeological ruins, suggesting the occurrence of a capable fault zone across the area. An integrated geophysical survey was carried out in order to identify the main subsurface tectonic discontinuity ascribable to the fault zone. The information derived from different geophysical techniques, such as electrical resistivity tomography, seismic refraction tomography, ground-penetrating radar, and magnetic surveys allowed us to infer that the fractures observed at the surface could have been produced by coseismic rupture. They are conceivably linked to a strong earthquake that probably occurred in the Roman period, around mid-end of the third-century AD; time constraints are inferred through the dating of buildings of the archaeological site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号