首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   21篇
  国内免费   7篇
测绘学   19篇
大气科学   40篇
地球物理   131篇
地质学   202篇
海洋学   42篇
天文学   72篇
综合类   6篇
自然地理   40篇
  2022年   8篇
  2021年   10篇
  2020年   11篇
  2019年   3篇
  2018年   19篇
  2017年   8篇
  2016年   16篇
  2015年   15篇
  2014年   22篇
  2013年   30篇
  2012年   10篇
  2011年   28篇
  2010年   22篇
  2009年   27篇
  2008年   19篇
  2007年   23篇
  2006年   27篇
  2005年   11篇
  2004年   14篇
  2003年   23篇
  2002年   19篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1988年   5篇
  1987年   3篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1975年   9篇
  1974年   5篇
  1973年   8篇
  1972年   4篇
  1970年   7篇
  1966年   4篇
  1954年   3篇
排序方式: 共有552条查询结果,搜索用时 15 毫秒
541.
The results from an integration of a global ocean circulation model have been condensed into an analysis of the volume, heat, and salt transports among the major ocean basins. Transports are also broken down between the model's Ekman, thermocline, and deep layers. Overall, the model does well. Horizontal exchanges of mass, heat, and salt between ocean basins have reasonable values; and the volume of North Atlantic Deep Water (NADW) transport is in general agreement with what limited observations exist. On a global basis the zonally integrated meridional heat transport is poleward at all latitudes except for the latitude band 30°S to 45°S. This anomalous transport is most likely a signature of the model's inability to form Antarctic Intermediate (AAIW) and Antarctic bottom water (AABW) properly. Eddy heat transport is strong at the equator where its convergence heats the equatorial Pacific about twice as much as it heats the equatorial Atlantic. The greater heating in the Pacific suggests that mesoscale eddies may be a vital mechanism for warming and maintaining an upwelling portion of the global conveyor-belt circulation. The model's fresh water transport compares well with observations. However, in the Atlantic there is an excessive southward transport of fresh water due to the absence of the Mediterranean outflow and weak northward flow of AAIW. Eddies in the mid-latitudes act to redistribute heat and salt down the mean gradients. Residual fluxes calculated from a sum of the computed advective (including eddies), forced, and stored fluxes of heat and salt represent transport mostly due to vertical sub-grid scale mixing processes. Perhaps the model's greatest weakness is the lack of strong AAIW and AABW circulation cells. Accurate thermohaline forcing in the North Atlantic (based on numerous hydrographic observations) helps the model adequately produce NADW. In contrast, the southern ocean is an area of sparse observation. Better thermohaline observations in this area may be needed if models such as this are to produce the deep convection that will achieve more accurate simulations of the global 3-dimensional circulation.  相似文献   
542.
The structural measure was the major solution for flood defense in Taiwan. However, the measure is always limited to the design standard and cannot prevent the damages when floods exceed certain scale. Therefore, non-structural measures for flood mitigation are the indispensable complements to structural solutions. The study introduces the establishment of inundation potential database that provides required information for the non-structural measures in Taiwan. The database was built by numerical simulations, based on different rainfall scenarios, and has been applied by the local governments of Taiwan for land use managements, flood warning systems, emergency responses, and flood insurance programs to reduce the flood damages and impacts.  相似文献   
543.
Solute transport is usually modeled by the advection-dispersion-reaction equation. In the standard approach, mechanical dispersion is a tensor with principal directions parallel and perpendicular to the flow vector. Since realistic scenarios include nonuniform and unsteady flow fields, the governing equation has full tensor mechanical dispersion. When conventional grid-based numerical methods are used, approximation of the cross terms arising from the off-diagonal terms cause nonphysical solution with oscillations. As an example, for the common scenario of contaminant input into a domain with zero initial concentration, the cross-dispersion terms can result in negative concentrations that can wreak havoc in reactive transport applications. To address this issue, we use the well-known flux-corrected-transport (FCT) technique for a standard finite volume method. Although FCT has most often been used to eliminate oscillations resulting from discretization of the advection term for explicit time stepping, we show that it can be adapted for full-tensor dispersion and implicit time stepping. Unlike other approaches based on new discretization techniques (e.g., mimetic finite difference, nonlinear finite volume), FCT has the advantage of being flexible and widely applicable. Implementation of FCT requires solving an additional system of equations at each time step, using a modified “low order” matrix and a modified right-hand-side vector. To demonstrate the flexibility of FCT, we have modified the well-known and widely used groundwater solute transport simulator, MT3DMS. We apply the new simulator, MT3DMS-FCT, to several benchmark problems that suffer from negative concentrations when using MT3DMS. The new results are mass conservative and strictly nonnegative.  相似文献   
544.
Hot springs in the Marsyandi Valley, Nepal, vent CO2 sourced from metamorphic fluids that mix with shallow groundwaters before degassing near the Earth's surface. The δ13C of spring waters ranges up to + 13‰, while that of the coexisting free gas phase is close to ? 4‰. Empirical and thermodynamic modelling of this isotopic fractionation suggests > 97 ± 1% CO2 degassing. The calculated minimum total CO2 degassing in the Marsyandi catchment is 5.4 × 109 mol/yr from a Cl-based estimate of the spring water discharge to the Marsyandi River and the fraction of CO2 degassed. Extrapolated to the whole of the Himalayas, this implies a probable minimum metamorphic CO2 flux of 0.9 × 1012 mol/yr, or ~ 13% of solid Earth CO2 degassing. The calculated flux is a factor of three greater than the estimated CO2 drawdown by silicate weathering in the Himalayas. Himalayan metamorphic degassing contributes a significant fraction of the global solid Earth CO2 flux and implies that metamorphism may cause changes in long-term climate that oppose those resulting from the orogenic forcing of chemical weatherability.  相似文献   
545.
In humid, forested mountain belts, bedrock landslides can harvest organic carbon from above ground biomass and soil (OCmodern) while acting to refresh the landscape surface and turnover forest ecosystems. Here the impact of landslides on organic carbon cycling in 13 river catchments spanning the length of the western Southern Alps, New Zealand is assessed over four decades. Spatial and temporal landslide maps are combined with the observed distribution and measured variability of hillslope OCmodern stocks. On average, it is estimated that landslides mobilized 7.6 ± 2.9 tC km?2 yr?1 of OCmodern, ~30% of which was delivered to river channels. Comparison with published estimates of OCmodern export in river suspended load suggests additional erosion of OCmodern by small, shallow landslides or overland flow in catchments. The exported OCmodern may contribute to geological carbon sequestration if buried in sedimentary deposits. Landslides may have also contributed to carbon sequestration over shorter timescales (<100 years). 5.4 ± 3.0 tC km?2 yr?1 of the eroded OCmodern was retained on hillslopes, representing a net‐carbon sink following re‐vegetation of scar surfaces. In addition, it was found that landslides caused rapid turnover of the landscape, with rates of 0.3% of the surface area per decade. High rates of net ecosystem productivity were measured in this forest of 94 ± 11 tC km?2 yr?1, which is consistent with rapid landscape turnover suppressing ecosystem retrogression. Landslide‐OCmodern yields and rates of turnover vary between river catchments and appear to be controlled by gradients in climate (precipitation) and geomorphology (rock exhumation rate, topographic slope). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
546.
Sediment vibracores and surface samples were collected from the mixed carbonate/siliciclastic inner shelf of west–central Florida in an effort to determine the three-dimensional facies architecture and Holocene geologic development of the coastal barrier-island and adjacent shallow marine environments. The unconsolidated sediment veneer is thin (generally <3 m), with a patchy distribution. Nine facies are identified representing Miocene platform deposits (limestone gravel and blue–green clay facies), Pleistocene restricted marine deposits (lime mud facies), and Holocene back-barrier (organic muddy sand, olive-gray mud, and muddy sand facies) and open marine (well-sorted quartz sand, shelly sand, and black sand facies) deposits. Holocene back-barrier facies are separated from overlying open marine facies by a ravinement surface formed during the late Holocene rise in sea level. Facies associations are naturally divided into four discrete types. The pattern of distribution and ages of facies suggest that barrier islands developed approximately 8200 yr BP and in excess of 20 km seaward of the present coastline in the north, and more recently and nearer to their present position in the south. No barrier-island development prior to approximately 8200 yr BP is indicated. Initiation of barrier-island development is most likely due to a slowing in the Holocene sea-level rise ca. 8000 yr BP, coupled with the intersection of the coast with quartz sand deposits formed during Pleistocene sea-level highstands. This study is an example of a mixed carbonate/siliciclastic shallow marine depositional system that is tightly constrained in both time and sea-level position. It provides a useful analog for the study of other, similar depositional systems in both the modern and ancient rock record.  相似文献   
547.
The Fairpoint Member of the Fox Hills Formation (upper Maastrichtian) in Meade County, South Dakota, USA, contains an osteichthyan assemblage indicative of transitional to marine shoreface deposits. The fauna consists of: Lepisosteus sp., Paralbula casei, Cylindracanthus cf. C. ornatus, Enchodus gladiolus, Hadrodus sp., and indeterminate osteichthyans with probable affinities to the Siluriformes and Beryciformes. The Fairpoint fauna is of limited species diversity and in this character mirrors many other Upper Cretaceous North American osteichthyan assemblages. Comparison to Upper Cretaceous chondrichthyan diversity and consideration of the structure of Cretaceous marine food webs suggest that osteichthyans are strongly under-represented in the Upper Cretaceous of North America. The small size and poor preservation potential of many Upper Cretaceous North American osteichthyans probably account for much of this observed paucity. Fairpoint osteichthyans are members of families that survive the Cretaceous–Paleocene boundary extinction event. Some of these genera and families are still extant and occur in a wide array of modern fresh, brackish, and shallow marine environments.  相似文献   
548.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
549.
550.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号