首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   31篇
  国内免费   11篇
测绘学   15篇
大气科学   44篇
地球物理   147篇
地质学   374篇
海洋学   87篇
天文学   130篇
综合类   3篇
自然地理   108篇
  2022年   4篇
  2020年   10篇
  2019年   8篇
  2018年   22篇
  2017年   13篇
  2016年   37篇
  2015年   14篇
  2014年   22篇
  2013年   40篇
  2012年   18篇
  2011年   34篇
  2010年   33篇
  2009年   35篇
  2008年   41篇
  2007年   45篇
  2006年   37篇
  2005年   28篇
  2004年   27篇
  2003年   42篇
  2002年   26篇
  2001年   27篇
  2000年   20篇
  1999年   15篇
  1998年   25篇
  1997年   14篇
  1996年   14篇
  1995年   13篇
  1994年   16篇
  1993年   12篇
  1992年   13篇
  1991年   15篇
  1990年   11篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   19篇
  1983年   10篇
  1982年   15篇
  1981年   12篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1975年   7篇
  1974年   9篇
  1973年   9篇
  1970年   3篇
排序方式: 共有908条查询结果,搜索用时 31 毫秒
31.
 The melting reaction: albite(solid)+ H2O(fluid) =albite-H2O(melt) has been determined in the presence of H2O–NaCl fluids at 5 and 9.2 kbar, and results compared with those obtained in presence of H2O–CO2 fluids. To a good approximation, albite melts congruently at 9 kbar, indicating that the melting temperature at constant pressure is principally determined by water activity. At 5 kbar, the temperature (T)- mole fraction (X (H2O) ) melting relations in the two systems are almost coincident. By contrast, H2O–NaCl mixing at 9 kbar is quite non-ideal; albite melts ∼70 °C higher in H2O–NaCl brines than in H2O–CO2 fluids for X (H2O) =0.8 and ∼100 °C higher for X (H2O) =0.5. The melting temperature of albite in H2O–NaCl fluids of X (H2O)=0.8 is ∼100 °C higher than in pure water. The PT curves for albite melting at constant H2O–NaCl show a temperature minimum at about 5 kbar. Water activities in H2O–NaCl fluids calculated from these results, from new experimental data on the dehydration of brucite in presence of H2O–NaCl fluid at 9 kbar, and from previously published experimental data, indicate a large decrease with increasing fluid pressure at pressures up to 10 kbar. Aqueous brines with dissolved chloride salt contents comparable to those of real crustal fluids provide a mechanism for reducing water activities, buffering and limiting crustal melting, and generating anhydrous mineral assemblages during deep crustal metamorphism in the granulite facies and in subduction-related metamorphism. Low water activity in high pressure-temperature metamorphic mineral assemblages is not necessarily a criterion of fluid absence or melting, but may be due to the presence of low a (H2O) brines. Received: 17 March 1995/Accepted: 9 April 1996  相似文献   
32.
Dense sand-bentonite buffer (γd = 1.67Mg/m3) has been proposed in Canada as one of several barriers for isolating nuclear fuel waste. The buffer will be required to function under conditions of high total pressures and elevated temperatures approaching 100°C. Summary results are presented from two test programs: (1) isothermal consolidated undrained triaxial (CIU¯) tests; and (2) isothermal drained constant-p′ (CID) triaxial tests. Specimens were consolidated at effective stresses up to 9.0 MPa and temperatures up to 100°C.

The results indicate parallel hardening lines at systematically lower values of specific volume at elevated temperatures. In shear, increased temperatures produced lower values of maximum deviator stressqf, and higher pore water pressure changesΔuf. The net result is curved peak strength envelops in plots ofqf versuspf that are higher at elevated temperatures, even though the strengths,qf of individual specimens are lower. The critical state strength envelope is curved inq, p′-planes.

The effect of drained heating on buffer to 100°C is not marked. Compressibilities, stiffnesses, strengths, and pore water pressure generation are all affected, but none of the changes are great.  相似文献   

33.
34.
Phase equilibria in the ternary systems H2O–CO2–NaCl and H2O–CO2–CaCl2 have been determined from the study of synthetic fluid inclusions in quartz at 500 and 800 °C, 0.5 and 0.9 GPa. The crystallographic control on rates of quartz overgrowth on synthetic quartz crystals was exploited to prevent trapping of fluid inclusions prior to attainment of run conditions. Two types of fluid inclusion were found with different density or CO2 homogenisation temperature (Th(CO2)): a CO2-rich phase with low Th(CO2), and a brine with relatively high Th(CO2). The density of CO2 was calibrated using inclusions in the binary system H2O–CO2. Mass balance calculations constrain tie lines and the miscibility gap between brines and CO2-rich fluids in the H2O–CO2–NaCl and H2O–CO2–CaCl2 systems at 500 and 800 °C, and 0.5 and 0.9 GPa. The miscibility gap in the CaCl2 system is larger than in the NaCl system, and solubilities of CO2 are smaller. CaCl2 demonstrates a larger salting-out effect than NaCl at the same P–T conditions. In ternary systems, homogeneous fluids are H2O-rich and of extremely low salinity, but at medium to high concentrations of salts and non-polar gases fluids are unlikely to be homogeneous. The two-phase state of crustal fluids should be common. For low fluid-rock ratios the cation compositions of crustal fluids are buffered by major crustal minerals: feldspars and micas in pelites and granitic rocks, calcite (dolomite) in carbonates, and pyroxenes and amphiboles in metabasites. Fluids in pelitic and granitic rocks are Na-K rich, while for carbonate and metabasic rocks fluids are Ca-Mg-Fe rich. On lithological boundaries between silicate and carbonate rocks, or between pelites and metabasites, diffusive cation exchange of the salt components of the fluid will cause the surfaces of immiscibility to intersect, leading to unmixing in the fluid phase. Dispersion of acoustic energy at critical conditions of the fluid may amplify seismic reflections that result from different fluid densities on lithological boundaries.Editorial responsibility: I. Parsons  相似文献   
35.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   
36.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
37.
We have developed a significant body of new field-based evidence relating to the history of crustal extension in western Turkey. We establish that two of the NE–SW-trending basins in this region, the Gördes and Selendi Basins, whose sedimentary successions begin in the early Miocene, are unlikely to relate to late-stage Alpine compressional orogeny or to E–W extension of Tibetan-type grabens as previously suggested. We argue instead that these basins are the result of earlier (?) late Oligocene, low-angle normal faulting that created approximately N–S “scoop-shaped” depressions in which clastic to lacustine and later tuffaceous sediments accumulated during early–mid-Miocene time, separated by elongate structural highs. These basins were later cut by E–W-trending (?) Plio–Quaternary normal faults that post-date accumulation of the Neogene deposits. In addition, we interpret the Alaşehir (Gediz) Graben in terms of two phases of extension, an early phase lasting from the early Miocene to the (?) late Miocene and a young Plio–Quaternary phase that is still active. Taking into account our inferred earlier phase of regional extension, we thus propose a new three-phase “pulsed extension” model for western Turkey. We relate the first two phases to “roll-back” of the south Aegean subduction zone and the third phase to the westward “tectonic escape” of Anatolia.  相似文献   
38.
Regions and sustainable development: regional planning matters   总被引:1,自引:0,他引:1  
This paper looks at how the term 'sustainable development' has been used in the process of regional plan making over the past decade. It emphasizes the differing geographies of these debates within England, in terms of how sustainable development has been used to justify different types of approach in different parts of the country. Both drawing on and challenging recent work on state theory, the paper argues the need to see regional planning as a part of a multi-scalar governance system, whose importance should not be underestimated.  相似文献   
39.
Three‐dimensional (3D) numerical modelling of fault displacement enables the building of geological models to represent the complex 3D geometry and geological properties of faulted sedimentary basins. Using these models, cross‐fault juxtaposition relationships are predicted in 3D space and through time, based on the geometries of strata that are cut by faults. Forward modelling of fault development allows a 3D prediction of fault‐zone argillaceous smear using a 3D application of the Shale Gouge Ratio. Numerical models of the Artemis Field, Southern North Sea, UK and the Moab Fault, Utah, USA are used to demonstrate the developed techniques and compare them to traditional one‐ and two‐dimensional solutions. These examples demonstrate that a 3D analysis leads to significant improvements in the prediction of fault seal, the analysis of the interaction of the sealing properties of multiple faults, and the interpretation of fault seal within the context of sedimentary basin geometry.  相似文献   
40.
Editorial     
Alastair Bonnett 《Area》2005,37(2):117-117
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号