首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   31篇
  国内免费   11篇
测绘学   15篇
大气科学   44篇
地球物理   147篇
地质学   374篇
海洋学   87篇
天文学   130篇
综合类   3篇
自然地理   108篇
  2022年   4篇
  2020年   10篇
  2019年   8篇
  2018年   22篇
  2017年   13篇
  2016年   37篇
  2015年   14篇
  2014年   22篇
  2013年   40篇
  2012年   18篇
  2011年   34篇
  2010年   33篇
  2009年   35篇
  2008年   41篇
  2007年   45篇
  2006年   37篇
  2005年   28篇
  2004年   27篇
  2003年   42篇
  2002年   26篇
  2001年   27篇
  2000年   20篇
  1999年   15篇
  1998年   25篇
  1997年   14篇
  1996年   14篇
  1995年   13篇
  1994年   16篇
  1993年   12篇
  1992年   13篇
  1991年   15篇
  1990年   11篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   19篇
  1983年   10篇
  1982年   15篇
  1981年   12篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1975年   7篇
  1974年   9篇
  1973年   9篇
  1970年   3篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
101.
Diffusion parameters for hydrogen diffusion in epidote-group minerals and micas have been measured under hydrothermal conditions, or calculated from existing experimental data, for bulk hydrogen isotope exchange experiments between hydrous minerals and water. Activation energies in the range 14 to 31 kcals/g-atom H are comparable to those derived by application of kinetic theory to experimental hydrogen isotope exchange data, and to those for oxygen diffusion in minerals under hydrothermal conditions. Diffusion of hydrogen in epidote is about four orders of magnitude faster than in muscovite, and about two orders of magnitude faster than in zoisite. Hydrogen diffusion in micas is about five orders of magnitude faster than oxygen diffusion, and hydrogen transport occurs dominantly parallel to the layers rather than parallel to the c-axis as for oxygen.Rapid hydrogen transport in minerals may proceed by hydrolysis of Si-O and Al-O bonds, followed by exchange of hydrolyzed oxygens with slower-diffusing (OH) or H2O. Water appears to be essential for stable isotope exchange between minerals in slowly cooling metamorphic rocks.Stable isotope data for regional metamorphic mineral assemblages suggests that water is usually present in small amounts during cooling of prograde regional metamorphic systems, and estimated closure temperatures for cessation of stable isotope exchange are often more comparable to those calculated from diffusion data than to likely temperatures of metamorphism.Alpine deformation of the Hercynian Monte Rose Granite (Frey et al. 1976) permitted access of water and initiated stable isotope exchange amongst coexisting minerals. The diffusional behaviour of species in relict Hercynian muscovites is consistent with available experimental diffusion data.  相似文献   
102.
103.
Enantiomeric measurements for aspartic acid, glutamic acid, and alanine in twenty-one different fossil bone samples have been carried out by three different laboratories using different analytical methods. These inter-laboratory comparisons demonstrate that D/L aspartic acid measurements are highly reproducible, whereas the enantiomeric measurements for the other amino acids show a wide variation between the three laboratories. At present, aspartic acid measurements are the most suitable for racemization dating of bone because of their superior analytical precision.  相似文献   
104.
The hydrogen isotope fractionation factors between epidote and aqueous 1 M and 4 M NaCl, 1 M CaCl2 solutions, and between epidote and seawater, have been measured over the temperature range 250–550°C over which the degree of dissociation of dissolved species varies significantly. Measured fractionations at 350°C are decreased by up to 12‰, 9‰ and 7‰ relative to pure water in seawater, 1 M CaCl2 and 1 M NaCl respectively, while above 500°C fractionations are not measurably dependent on fluid composition. Water—solution fractionation factors are derived which are generally applicable to the correction of mineral—water hydrogen isotope fractionations for the composition of the fluid phase.The hydrogen isotope compositions of natural epidotes are interpreted in the light of experimental fractionation data for situations where temperature, δD (fluid), and, in some cases, fluid chemistry, are independently known. Epidotes from active geothermal systems have hydrogen isotope quench temperatures consistent with or close to measured well temperatures unless the measured temperature has declined substantially since epidote formation or there is uncertainty in the D/H ratio of the water associated with the epidote because of isotopic heterogeneity in the well waters. Hydrothermal and metamorphic epidotes show closure temperatures of 175–225°C and 200–250°C. There is no evidence that retrograde metamorphic fluids, if present, are isotopically different from prograde fluids.The water-solution fractionations indicate strong solute-solvent interactions between 250 and 450°C and imply that both dissociated and associated species contribute to the fractionation effects through modification of the orientations and structure of the water molecules. Solute-solvent interactions become negligible at temperatures around 550°C.  相似文献   
105.
106.
An experiment, in which an iron-nickel-copper sulphide melt was heated with synthetic chromite and then cooled, showed that substantial quantities of chromite had dissolved in the melt and had then recrystallized as euhedral crystals rimmed with magnetite. This experiment suggests that the unusual chromite (low in Mg and Al) which is associated with the sulphide phase in Western Australian nickel ores may have formed in a similar way.J.M.R. carried out the experimental part of this investigation as a post-graduate student at Flinders University, South Australia, working under a CSIRO extramural grant.  相似文献   
107.
Large, coarse-grained fragments of granite, containing plagioclase, a silica polymorph, potash feldspar, and exsolved pyroxene, with minor ilmenite, a phosphate, Fe-metal, and troilite, occur in sample 15405. A similar coarse-grained clast type (KREEP-rich quartz-monzodiorite) has a similar mineralogy but contains more ilmenite, large phosphates, less silica, and lacks troilite. One unusual KREEPy olivine vitrophyre fragment is also present. All the other fragments in 15405 are of Apollo 15-type KREEP basalt; ANT-suite and breccia fragments are conspicuously absent. The groundmass of 15405, of a KREEP basalt composition, is vesicular with a variolitic texture and is interpreted as an impact melt. Except for the olivine vitrophyre, the fragments are believed to be the remnants of a shallow-level KREEP basalt-granite differentiated pluton, in which granite was produced as the residual liquid without involvement of immiscibility effects.The large amount of melt required to produce the pluton, and the retention of the pluton's integrity from crystallization until the formation of the source boulder of 15405 suggest that KREEP basalt magma is not ancient (~4.3 b.y.), but was produced by the partial melting of the interior of the moon at around 3.90–3.95 b.y.; this conclusion is supported by the presence of KREEP basalt in soil breccia 15205, to the exclusion of other highland rock types. If this interpretation is correct, the source of Apollo 15-type KREEP basalt had a Rb/Sr ratio higher than anorthositic norite, commonly proposed as the source rock.  相似文献   
108.
Alastair Beach 《Tectonophysics》1977,40(3-4):201-225
Vein arrays and pressure-solution cleavages are common in the sandstone units of the deformed flysch. Both structures were established prior to the folding of the sediments, and they continued to evolve during this folding. Tensile fractures and conjugate sets of shear fractures (of wrench fault type) were formed. En-echelon arrays of veins are closely associated with the formation of these principal veins. The geometry and relations of the veins are described in detail and their relation to the principal stresses at the time of formation is discussed.

Forking at vein terminations, branch fractures and offset structures in veins are described. The analogies between these and structures produced in rock deformation experiments and found in magmatic dykes are discussed. The branch fracture provides a record of the orientation of the maximum principal stress at the time of its formation.

The veins are infilled with quartz and siderite displaying drusy growth fabrics, indicating that crystal growth occurred into a fluid-filled cavity. It is suggested that the veins originated as hydraulic fractures in a flysch sequence that had developed high pore-fluid pressures during sedimentation. The material in the veins was derived by pressure-solution activity in the sandstone units, which produced a spaced pressure-solution cleavage throughout the region. The relations between veins and pressure-solution cleavages are described. Both small- and large-scale solution transfer of material was involved.  相似文献   

109.
Graham Ryder 《Lithos》1974,7(3):139-146
The origin of massif anorthosites cannot be simply explained by a single magma type. Two of the commonly proposed parents for anorthosites are andesites (quartz-diorites) and high-alumina basalts. It is proposed here that these two magmas are the parents for two groups of anorthosites which include all anorthosite massifs, and that the parents for any given anorthosite massif can be determined by the rock sequence associated with the massif.Evidence from experiments and from phenocrysts in volcanics, suggests that andesites crystallizing in the granulite facies would produce plagioclase cumulates (anorthosites) at the base, followed by dioritic and acidic material, whereas high-alumina basalts would produce gabbros followed by anorthosite with very little succeeding acidic material. All massif anorthosites for which relevant data is available have one or the other of these stratigraphic sequences. Grouped according to these sequences, they coincide with two previously proposed groups, i.e. Andesine-type and Labradorite-type, whose characteristics are shown to be compatible with derivation from andesite and high-alumina basalt, respectively.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号