首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1658篇
  免费   35篇
  国内免费   21篇
测绘学   53篇
大气科学   98篇
地球物理   347篇
地质学   587篇
海洋学   116篇
天文学   344篇
综合类   16篇
自然地理   153篇
  2021年   8篇
  2020年   23篇
  2019年   22篇
  2018年   31篇
  2017年   23篇
  2016年   31篇
  2015年   25篇
  2014年   37篇
  2013年   73篇
  2012年   50篇
  2011年   69篇
  2010年   87篇
  2009年   94篇
  2008年   78篇
  2007年   66篇
  2006年   59篇
  2005年   57篇
  2004年   50篇
  2003年   64篇
  2002年   53篇
  2001年   27篇
  2000年   39篇
  1999年   25篇
  1998年   21篇
  1997年   22篇
  1996年   22篇
  1995年   23篇
  1994年   27篇
  1993年   25篇
  1992年   23篇
  1991年   8篇
  1990年   21篇
  1989年   24篇
  1988年   26篇
  1987年   21篇
  1986年   20篇
  1985年   34篇
  1984年   32篇
  1983年   28篇
  1982年   22篇
  1981年   36篇
  1980年   24篇
  1979年   16篇
  1978年   15篇
  1977年   20篇
  1976年   14篇
  1975年   12篇
  1974年   19篇
  1973年   16篇
  1971年   8篇
排序方式: 共有1714条查询结果,搜索用时 15 毫秒
911.
Following previous work on bounds for complex dielectrics, bounds on the complex conductivity of a mixture of two isotropic components can be developed which are independent of any special assumption concerning the geometry of the mixture. If certain broad restrictions are assumed, such as isotropy of the mixture, then the bounds can be made more restrictive. These bounds reveal the range of the induced polarization response which can be caused by a mixture of two materials of known complex conductivity. The bounds can also be generalized for spectral responses. The bounds are conservative lithologically in the sense that many of the special models corresponding to boundary responses have lithological counterparts. The chief use for the given bounds is to gain insight into the nature of the induced polarization response. It is also possible to use the bounds to estimate the volume fractions of the components. We illustrate how this is done for the case of a general anisotropic medium.  相似文献   
912.
Central European lake whitefish (Coregonus spp.) colonized Swiss lakes following the last glacial retreat and have undergone rapid speciation and adaptive radiation. Up to six species have been shown to coexist in some lakes, and individual species occupy specific ecological niches and have distinct feeding and reproductive ecologies. We studied methylmercury (MeHg) accumulation in sympatric whitefish species from seven Swiss lakes to determine if ecological divergence has led to different rates of MeHg bioaccumulation. In four of seven lakes, sympatric species had distinctly different MeHg levels, which varied by up to a factor of two between species. Generally, species with greater MeHg levels were smaller in body size and planktivorous, and species with lower MeHg were larger and benthivorous. While modest disparities in trophic position between species might be expected a priori to explain the divergence in MeHg, δ15N of bulk tissue did not correlate with fish MeHg in five of seven lakes. Results of a nested ANCOVA analysis across all lakes indicated that only two factors (species, lake) explained substantial portions of the variance, with species accounting for more variance (52 %) than inter-lake differences (32 %). We suggest that differences in MeHg accumulation were likely caused by diverging metabolic traits between species, such as differences in energy partitioning between anabolism and catabolism, potentially interacting with species-specific prey resource utilization. These results indicate substantial variability in MeHg accumulation between closely related fish species, illustrating that ecological speciation in fish can lead to divergent MeHg accumulation patterns.  相似文献   
913.
This scientific briefing announces the availability of a new multi‐element high‐frequency water quality data set that is openly accessible to the research community. The data set comprises up to 2 years of 7‐hourly water quality data for two streams and one rainfall site in the Upper Severn catchment at Plynlimon in Mid‐Wales. The measurements cover 50 analytes ranging from H+ to U and spanning six orders of magnitude in concentration, including major, minor and trace elements as well as nutrients, and they complement decades of weekly measurements of the same analytes at the Upper Severn. Together, the weekly and 7‐hourly time series provide a unique data set for studying both long‐term trends and short‐term dynamics. The data show complex behaviour over a wide range of timescales, challenging our understanding of catchment processes and informing future modelling efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
914.
A finite element model (namely TELEMAC) with a range of mesh refinements and assumptions of coastal water depths is used to determine an optimal mesh for computing the M 2 tide in a region of significant geographical extent. The region adopted is the west coast of Britain covering the Irish and Celtic Seas. The nature of the spatially varying topography and tidal distribution, together with a comprehensive set of measurements and existing accurate finite difference model makes it ideal for such a study. Calculations show that a water-depth dependent criterion for determining element size gives an optimal distribution over the majority of the region. However, local refinements in narrow channels such as the North Channel and Bristol Channel are required. Although the specification of a zero coastal water depth, leads to a fine near coastal grid, this does not yield the most accurate solution. In addition the computational cost is high. In practice in a large area model the use of a non-zero coastal water depth yields optimum accuracy at minimal computational cost. However, calculations show that accuracy is critically dependent upon nearshore water depths. Comparison with the finite difference model shows that the bias in elevation amplitude in the finite difference solution is removed in the finite element calculation.  相似文献   
915.
A three-dimensional baroclinic finite element model with a coarse and fine (i.e. local refinement along the shelf edge) grid is used to examine the influence of shelf edge grid refinement upon the internal tide generation and propagation off the west coast of Scotland. Comparisons are made with observations in the region and with a published solution using a finite difference model. The calculations show that provided that the finite element grid is refined in the internal tide generation area and the adjacent region through which the internal tide propagates, then a numerically accurate solution is obtained. In the regions of strong internal tide generation with a local grid refinement, internal wave energy can accumulate at small scales and must be removed by a scale-selective filter.  相似文献   
916.
917.
It is often of interest to model the incidence and duration of threshold exceedance events for an environmental variable over a set of monitoring locations. Such data arrive over continuous time and can be considered as observations of a two-state process yielding, sequentially, a length of time in the below threshold state followed by a length of time in the above threshold state, then returning to the below threshold state, etc. We have a two-state continuous time Markov process, often referred to as an alternating renewal process. The process is observed over a truncated time window and, within this window, duration in each state is modeled using a distinct cumulative intensity specification. Initially, we model each intensity over the window using a parametric regression specification. We extend the regression specification adding temporal random effects to enrich the model using a realization of a log Gaussian process over time. With only one type of renewal, this specification is referred to as a Gaussian process modulated renewal process. Here, we introduce Gaussian process modulation to the intensity for each state. Model fitting is done within a Bayesian framework. We clarify that fitting with a customary log Gaussian process specification over a lengthy time window is computationally infeasible. The nearest neighbor Gaussian process, which supplies sparse covariance structure, is adopted to enable tractable computation. We propose methods for both generating data under our models and for conducting model comparison. The model is applied to hourly ozone data for four monitoring sites at different locations across the United States for the ozone season of 2014. For each site, we obtain estimated profiles of up-crossing and down-crossing intensity functions through time. In addition, we obtain inference regarding the number of exceedances, the distribution of the duration of exceedance events, and the proportion of time in the above and below threshold state for any time interval.  相似文献   
918.
919.
Analytical Model for Contaminant Mass Removal by Air Sparging   总被引:2,自引:0,他引:2  
An analytical model was developed lo predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicted tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.  相似文献   
920.
Abstract Understanding the evolution and destruction of past oceans not only leads to a better understanding of earth history, but permits comparison with extant ocean basins and tectonic processes. This paper reviews the history of the Early Paleozoic circum-Atlantic oceans by analogy with the Pacific Ocean and Mesozoic Tethys. Rifting and continental separation from 620 to 570 Ma led to the development of passive margins along parts of the northern margin of Gondwana (the western coast of South America); eastern Laurentia (eastern North America, NW Scotland and East Greenland), and western Baltica (western Scandinavia). Meagre paleomagnetic data suggest that western South America and eastern North America could have been joined together to form facing margins after breakup. Although western Baltica is an apparently obvious candidate for the margin facing NW Scotland and East Greenland, the paleomagnetic uncertainties are so large that other fragments could have been positioned there instead. The Iapetus Ocean off northeastern Gondwana was probably a relatively wide Pacific-type ocean with, during the late Precambrian to early Ordovician, the northern margin of Gondwana as a site of continentward-dipping subduction zone(s). The 650-500 Ma arc-related igneous activity here and the associated deformation gave rise to the Cadomian, ‘Grampian’, Penobscotian, and Famantinian igneous and orogenic events. By 490-470 Ma, marginal basins had formed along the eastern Laurentian margin as far as NE Scotland, along parts of the northern margin of Gondwana, and off western Baltica, but none are known from the East Greenland margin. These basins closed and parts were emplaced as ophiolites shortly after their formation by processes that, at least in some cases, closely resemble the emplacement of the late Cretaceous Semail ophiolite of Oman. This orogenic phase seems to have involved collision and attempted subduction of the continental margin of Laurentia, Gondwana and Baltica. In Baltica it gave rise to some eclogite facies metamorphism. Marginal basin development may have been preceded by arc formation as early as ca 510 Ma. A double arc system evolved outboard from the eastern Laurentian and western Baltica margins, analogous to some of the arc systems in the present-day western Pacific. At 480-470 Ma, there was a second phase of breakup of Gondwana, affecting the active Gondwanan margin. Eastern and Western Avalonia, the Carolina Slate Belt, Piedmont, and other North American exotic continental blocks rifted away from Gondwana. Farther east, Armorica, Aquitainia, Iberia and several European exotic continental blocks also rifted away, though it is unlikely that they all rifted at the same time. Between 460-430 Ma, peaking at ca 450 Ma, orogenic events involved continuing arc-continent collision(s). From 435-400 Ma the remaining parts of the Eastern Iapetus Ocean were destroyed and the collision of Baltica with Laurentia caused the 430-400 Ma Scandian orogeny, followed by suturing of these continents during the Siluro-Devonian Acadian orogeny or Late Caledonian orogeny to 380 Ma, leaving a smaller but new ocean south of the fragments that had collided with the Laurentian margin farther south. The Ligerian orogeny 390-370 Ma collision of Gondwana-derived Aquitaine-Cantabrian blocks with Eastern Avalonia-Baltica and removed the part of the Iapetus south of Baltica. Prior to any orogenic events, the Eastern Iapetus Ocean between Baltica and Laurentia may have resembled the present-day central Atlantic Ocean between Africa and North America. The ocean appears to have closed asymmetrically, with arcs forming first outboard of the western margin of Baltica while the East Greenland margin was unaffected. The Western Iapetus Ocean between Laurentia and Gondwana also closed asymmetrically with a dual arc system developing off Laurentia and an arc system forming off the northern margin of Gondwana. Like the Pacific Ocean today, the Eastern Iapetus Ocean had a longer and more complex history than the Western Iapetus Ocean: it was already in existence at 560 Ma, probably developed over at least 400 million years, by mid-Cambrian time was many thousands of kilometres wide at maximum extent, and was associated with a < 30 million year phase of marginal basin formation. In contrast, the Western Iapetus Ocean appears to have been much narrower, shorter lived (probably < 100 million years), and associated with the rifting to form two opposing passive carbonate margins, analogous to the Mesozoic Tethys or the present-day Mediterranean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号