首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1627篇
  免费   42篇
  国内免费   21篇
测绘学   52篇
大气科学   94篇
地球物理   345篇
地质学   578篇
海洋学   109篇
天文学   343篇
综合类   16篇
自然地理   153篇
  2022年   8篇
  2021年   8篇
  2020年   23篇
  2019年   22篇
  2018年   31篇
  2017年   23篇
  2016年   31篇
  2015年   25篇
  2014年   37篇
  2013年   72篇
  2012年   49篇
  2011年   68篇
  2010年   87篇
  2009年   91篇
  2008年   78篇
  2007年   63篇
  2006年   58篇
  2005年   57篇
  2004年   50篇
  2003年   63篇
  2002年   52篇
  2001年   27篇
  2000年   39篇
  1999年   25篇
  1998年   20篇
  1997年   22篇
  1996年   21篇
  1995年   23篇
  1994年   27篇
  1993年   25篇
  1992年   23篇
  1990年   21篇
  1989年   23篇
  1988年   26篇
  1987年   21篇
  1986年   20篇
  1985年   34篇
  1984年   32篇
  1983年   27篇
  1982年   22篇
  1981年   35篇
  1980年   24篇
  1979年   16篇
  1978年   15篇
  1977年   20篇
  1976年   14篇
  1975年   11篇
  1974年   19篇
  1973年   16篇
  1971年   8篇
排序方式: 共有1690条查询结果,搜索用时 31 毫秒
121.
122.
Groundwater samples from 288 domestic wells in Barry County, Michigan, were analyzed for 33 inorganic chemical parameters. Variations in chemical composition were investigated by considering the possible effects of human impact, aquifer type (bedrock vs glacial drift), chemical evolution along groundwater flow paths, and glacial landform type (moraine vs outwash). Approximately 25 percent of the glacial drift wells were classified as degraded by human impact and were excluded from further analysis of chemical variation. Two-sample tests comparing individual concentrations from drift and bedrock aquifers suggest that groundwater in the Marshall Sandstone aquifer is derived from local recharge through the glacial drift. This conclusion is supported by generalized groundwater flow patterns recognized for the two aquifers.Concentrations in both aquifers were examined in relation to generalized flow paths derived from water level data and also by classification of wells as recharge, transition, and discharge. No spatial concentration trends in major ions were detected, although iron concentrations do appear to increase from recharge to discharge areas. Declining redox potential along groundwater flow paths may explain this trend.The possible influence of glacial landform type was investigated by comparing concentrations of wells in moraines with those in outwash deposits. Wells in moraines have significantly higher concentrations of most parameters, perhaps due to higher content of finer, more chemically reactive sediment grains.  相似文献   
123.
124.
Sm-Nd model ages of orthopyroxene-bearing massif charnockites from the Cardamom Hills Massif and adjoining supracrustal rocks from the Kerala Khondalite Belt in southernmost India are used to infer some of the relationships within these rocks and between them and neighboring areas. Most of these rocks have model ages of 2.1–2.8 Ga with most charnockites in the range 2.2–2.6 Ga. Thus, 3.0–3.4 Ga Archean rocks to their north did not contribute material to either suite and the two suites may have been juxtaposed after formation of the supracrustal rocks. The similarity of Sm-Nd isotope systems in the two units studied here supports an argument that the massif charnockites were the primary sole source of the detritus incorporated into the supracrustal rocks. A cordierite gneiss, representative of a relatively minor lithology in the supracrustal belt, has a model age of 1.3 Ga. The protolith of this gneiss not only formed from much younger material than the rest of the belt but also formed significantly after the other metasedimentary rocks. The source material of the gneiss protolith may have been located in the Wanni and Vijayan Complexes of Sri Lanka. The overlap of the model ages of rocks in this area and those in the Highland Complex of Sri Lanka supports the notion that these two sets of rocks were joined to each other in Gondwana. They belong to a belt that ran from Antarctica through Sri Lanka and India into Madagascar. This belt was involved in Pan-African tectono-metamorphism, as reflected in the 550 Ma age of the last, granulite-forming, event throughout the belt.  相似文献   
125.
126.
The possibility of magma formation due to the release of stresses in the Crust and Upper Mantle of the Earth is examined for both tensile and compressive failure. The correlation of volcanic activity with shallow and intermediate focus earthquakes is examined in the light of new experimental data on the strength of rocks, and recent theories of the thermal history of the Earth. It is found that in association with earthquakes, granitic magmas may be generated between depths of approximately 15 and 50 kilometers; basaltic magmas between 50 and 100 kilometers; while duntic magmas are unlikely to be generated in this manner.  相似文献   
127.
In this paper we analyze some Viking infrared thermal mapping (IRTM) measurements of local Martian dust storms observed in the southern tropical region of the planet between Ls=225 and 262°. The derived opacities of these storms show that in the most opaque regions of the cloud, the optical thickness may be ≈6. Away from the individual clouds, the opacity is ≈2, which is still about four times the background level of dustiness in the Martian atmosphere. We find considerable structure in the derived opacity which will create corresponding variations in the atmospheric heating, which in turn may have an important feedback upon the local winds.  相似文献   
128.
The Fourier techniques of Paper I have been exhaustively calibrated using Unno's results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic field strengths and inclination angles can be measured very accurately from noisy, saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of our error analysis are presented graphically.  相似文献   
129.
Large subvolcanic intrusions are recognized within most Precambrian VMS camps. Of these, 80% are quartz diorite–tonalite–trondhjemite composite intrusions. The VMS camps spatially associated with composite intrusions account for >90% of the aggregate sulfide tonnage of all the Precambrian, intrusion-related VMS camps. These low-alumina, low-K, and high-Na composite intrusions contain early phases of quartz diorite and tonalite, followed by more voluminous trondhjemite. They have a high proportion of high silica (>74% SiO 2) trondhjemite which is compositionally similar to the VMS-hosting rhyolites within the volcanic host-rock successions. The quartz-diorite and possibly tonalite phases follow tholeiitic fractionation trends whereas the trondhjemites fall within the composition field for primitive crustal melts. These transitional M-I-type primitive intrusive suites are associated with extensional regimes within oceanic-arc environments. Subvolcanic composite intrusions related to the Archean Sturgeon Lake and Noranda, and Paleoproterozoic Snow Lake VMS camps range in volume from 300 to 1,000 km 3. Three have a sill morphology with strike lengths between 15 and 22 km and an average thickness between 1,500 and 2,000 m. The fourth has a gross stock-like shape. The VMS deposits are principally restricted to the volcanic strata above the strike length of the intrusions, as are areally extensive, thin exhalite units. The composite intrusions contain numerous internal phases which are commonly clustered within certain parts of the composite intrusion. These clusters underlie eruptive centers surrounded by areas of hydrothermal alteration and which contain most of the VMS deposits. Early quartz-diorite and tonalite phases appear to have intruded in rapid succession. Evidence includes gradational contacts, magma mixing and disequilibrium textures. They appear to have been emplaced as sill-dike swarms. These early phases are present as pendants and xenoliths within later trondhjemite phases. The trondhjemite phases contain numerous internal contacts indicating emplacement as composite sills. Common structural features of the composite intrusions include early xenolith phases, abundant small comagmatic dikes, fractures and veins and, in places, columnar jointing. Internal phases may differ greatly in texture from fine- to coarse-grained, aphyric and granophyric through seriate to porphyritic. Mineralogical and isotopic evidence indicates that early phases of each composite intrusion are affected by pervasive to fracture-controlled high-temperature (350–450 °C) alteration reflecting seawater-rock interaction. Trondhjemite phases contain hydrothermal-magmatic alteration assemblages within miarolitic cavities, hydrothermal breccias and veins. This hydrothermal-magmatic alteration may, in part, be inherited from previously altered wall rocks. Two of the four intrusions are host to Cu-Mo-rich intrusive breccias and porphyry-type mineralization which formed as much as 14 Ma after the main subvolcanic magmatic activity. The recognition of these Precambrian, subvolcanic composite intrusions is important for greenfields VMS exploration, as they define the location of thermal corridors within extensional oceanic-arc regimes which have the greatest potential for significant VMS mineralization. The VMS mineralization may occur for 2,000 m above the intrusions. In some cases, VMS mineralization has been truncated or enveloped by late trondhjemite phases of the composite intrusions. Evidence that much of the trondhjemitic magmatism postdates the principal VMS activity is a critical factor when developing heat and fluid flow models for these subseafloor magmatic-hydrothermal systems.  相似文献   
130.
The two-dimensional implementation of the analytic element method (AEM) is commonly used to simulate steady-state saturated groundwater flow phenomena at regional and local scales. However, unlike alternative groundwater flow simulation methods, AEM results are not ordinarily used as the basis for simulation of reactive solute transport. The use of AEM-simulated flow fields is impeded by the discrepancy between a continuous representation of flow and a typically discrete representation of transport, and requires translation of the flow solution to a discrete analog. This paper presents a variety of methods for analytically calculating conservative discrete water fluxes and integrated components of the dispersion tensor across cell interfaces. An Eulerian finite difference method based on these AEM-derived parameters is implemented for use in simulation of 2D (vertically averaged) solute transport. This implementation is first benchmarked against existing methods that use standard finite difference flow solutions, then used to investigate the effects of an inaccurate discrete water balance. It is shown that improper translation of AEM fluxes leads to significant water balance errors and inaccurate simulation of contaminant transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号