首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   17篇
  国内免费   13篇
测绘学   2篇
大气科学   20篇
地球物理   129篇
地质学   203篇
海洋学   136篇
天文学   117篇
综合类   5篇
自然地理   24篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   10篇
  2017年   12篇
  2016年   17篇
  2015年   5篇
  2014年   23篇
  2013年   21篇
  2012年   13篇
  2011年   19篇
  2010年   23篇
  2009年   29篇
  2008年   33篇
  2007年   33篇
  2006年   30篇
  2005年   33篇
  2004年   15篇
  2003年   19篇
  2002年   10篇
  2001年   15篇
  2000年   14篇
  1999年   20篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   7篇
  1994年   7篇
  1993年   8篇
  1992年   13篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   8篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   7篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   4篇
  1979年   6篇
  1978年   9篇
  1977年   4篇
  1974年   5篇
  1973年   5篇
  1972年   4篇
  1970年   4篇
排序方式: 共有636条查询结果,搜索用时 625 毫秒
391.
The role of copepod grazing on the ecosystem dynamics in the Oyashio region, western subarctic Pacific was investigated during six cruises from June 2001 to June 2002. In situ grazing rates of the copepod community (CGR) were measured by the gut fluorescence method in respect to developmental stages of dominant species. In terms of biomass, more than 80% of the copepod community was dominated by six large calanoid species (Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, Eucalanus bungii, Metridia pacifica and Metridia okhotensis) throughout the year. Resulting from the observed pattern of the interzonal migrating copepods, the CGR in the Oyashio region was divided into three phases, i.e. spring (bloom), summer (post-bloom) and autumn-winter phase. During the spring bloom, late copepodites of the interzonal migrating species, N. cristatus, N. flemingeri and E. bungii appeared in the surface layer (0-50 m) to consume the production of the bloom, resulting in a high grazing rate of the copepod community (7.9 mg Chl m−2 d−1), though its impact on phytoplankton community was low due to the high primary productivity. During the post-bloom period, although the copepod community which was dominated by N. cristatus, N. plumchrus, M. pacifica and newly recruited E. bungii still maintained a high biomass, the CGR was generally lower (1.8-2.6 mg Chl m−2 d−1 for June and August 2001), probably due to the lower availability of phytoplankton. Nevertheless, the highest CGR was also observed during this period (10.5 mg Chl m−2 d−1 in June 2002). The high CGR on autotrophic carbon accounted for 69% of the primary production, suggesting that the copepod community in the Oyashio region potentially terminates the phytoplankton bloom. Abundant occurrence of young E. bungii, which is a characteristic phenomenon in the Oyashio region, was largely responsible for the high grazing pressure in June 2002 suggesting that success of reproduction, growth, and survival in E. bungii during the spring bloom is an important factor in controlling phytoplankton abundance during the post-bloom season. During autumn and winter, CGR was the lowest in the year (0.29-0.38 mg Chl. m−2 d−1) due to the disappearance of the interzonal migrating copepods from the surface layer. Diel migrant M. pacifica was the most important grazer during this period. The annual ingestion of the copepod community is estimated as 37.7 gC m−2 on autotrophic carbon (converted using C:Chl ratio of 30) or 137.9 gC m−2 on suspended particles (using C:Chl ratio of in situ value, 58-191), accounting for 13% and 46% of annual primary production, respectively. This study confirms that copepod grazing is an important pathway in carbon flow in the Oyashio region and in particular their role in the phytoplankton dynamics is significant for the termination of the spring bloom.  相似文献   
392.
Abstract. Silica scales containing large amounts of smectite were recently found in the pipelines for geothermal water at a geothermal power plant. To elucidate the mechanism of smectite formation, seven silica scale samples were characterized by powder X-ray diffraction, chemical analysis and 27A1 MAS NMR. Smectite was present in samples with MgO levels above 10 wt% and Al2O3 levels below 10 wt%. In 27A1 MAS NMR spectra, peaks assigned to both tetrahedrally and octahedrally coordinated aluminum (Al(4) and Al(6)) were observed for Mg-rich samples, whereas a peak due to Al(4) alone appeared in Mg-poor samples. From these observation and comparison between 27A1 MAS NMR spectra for synthesized precipitates of Al2O3-SiO2 containing MgO and not containing MgO, it is concluded that magnesium plays an important role in the stabilization of Al(6), and results in the formation of smectite  相似文献   
393.
The Kay Tanda epithermal Au deposit in Lobo, Batangas is one of the Au deposits situated in the Batangas Mineral District in southern Luzon, Philippines. This study aims to document the geological, alteration, and mineralization characteristics and to determine the age of the mineralization, the mechanism of ore deposition, and the hydrothermal fluid characteristics of the Kay Tanda deposit. The geology of Kay Tanda consists of (i) the Talahib Volcanic Sequence, a Middle Miocene dacitic to andesitic volcaniclastic sequence that served as the host rock of the mineralization; (ii) the Balibago Diorite Complex, a cogenetic intrusive complex intruding the Talahib Volcanic Sequence; (iii) the Calatagan Formation, a Late Miocene to Early Pliocene volcanosedimentary formation unconformably overlying the Talahib Volcanic Sequence; (iv) the Dacite Porphyry Intrusives, which intruded the older lithological units; and (v) the Balibago Andesite, a Pliocene postmineralization volcaniclastic unit. K‐Ar dating on illite collected from the alteration haloes around quartz veins demonstrated that the age of mineralization is around 5.9 ± 0.2 to 5.5 ± 0.2 Ma (Late Miocene). Two main styles of mineralization are identified in Kay Tanda. The first style is an early‐stage extensive epithermal mineralization characterized by stratabound Au‐Ag‐bearing quartz stockworks hosted at the shallower levels of the Talahib Volcanic Sequence. The second style is a late‐stage base metal (Zn, Pb, and Cu) epithermal mineralization with local bonanza‐grade Au mineralization hosted in veins and hydrothermal breccias that are intersected at deeper levels of the Talahib Volcanic Sequence and at the shallower levels of the Balibago Intrusive Complex. Paragenetic studies on the mineralization in Kay Tanda defined six stages of mineralization; the first two belong to the first mineralization style, while the last four belong to the second mineralization style. Stage 1 is composed of quartz ± pyrophyllite ± dickite/kaolinite ± diaspore alteration, which is cut by quartz veins. Stage 2 is composed of Au‐Ag‐bearing quartz stockworks associated with pervasive illite ± quartz ± smectite ± kaolinite alteration. Stage 3 is composed of carbonate veins with minor base metal sulfides. Stage 4 is composed of quartz ± adularia ± calcite veins and hydrothermal breccias, hosting the main base metal and bonanza‐grade Au mineralization, and is associated with chlorite‐illite‐quartz alteration. Stage 5 is composed of epidote‐carbonate veins associated with epidote‐calcite‐chlorite alteration. Stage 6 is composed of anhydrite‐gypsum veins with minor base metal mineralization. The alteration assemblage of the deposit evolved from an acidic mineral assemblage caused by the condensation of magmatic volatiles from the Balibago Intrusive Complex into the groundwater to a slightly acidic mineral assemblage caused by the interaction of the host rocks and the circulating hydrothermal waters being heated up by the Dacite Porphyry Intrusives to a near‐neutral pH toward the later parts of the mineralization. Fluid inclusion microthermometry indicates that the temperature of the system started to increase during Stage 1 (T = 220–250°C) and remained at high temperatures (T = 250–290°C) toward Stage 6 due to the continuous intrusion of Dacite Porphyry Intrusives at depth. Salinity slightly decreased toward the later stages due to the contribution of more meteoric waters into the hydrothermal system. Boiling is considered the main mechanism of ore deposition based on the occurrence of rhombic adularia, the heterogeneous trapping of fluid inclusions of variable liquid–vapor ratios, the distribution of homogenization temperatures, and the gas ratios obtained from the quantitative fluid inclusion gas analysis of quartz. Ore mineral assemblage and sulfur fugacity determined from the FeS content of sphalerite at temperatures estimated by fluid inclusion microthermometry indicate that the base metal mineralization at Kay Tanda evolved from a high sulfidation to an intermediate sulfidation condition.  相似文献   
394.
煅烧温度对高岭石相转变过程及Si、Al活性的影响   总被引:9,自引:0,他引:9  
通过对吉林通化煤系高岭石和美国Georgia高岭石在200~1300℃热处理产物的MASNMR谱和XRD,IR,DTA等的研究,主要获得如下结论:①煅烧高岭石的相转变经历了四个阶段——脱羟阶段(约550℃),偏高岭石阶段(550~850℃),SiO2分凝(850~1100℃)及Al2O3分凝阶段(950~1100℃),莫来石、方英石形成阶段(1100℃以上);②偏高岭石-莫来石的相转变过程中存在SiO2和Al2O3的分凝,其中SiO2的分凝温度是850℃,而Al2O3的分凝温度是950℃;③1100℃开始,由偏高岭石分凝形成的非晶质SiO2一部分和Al2O3-γ发生反应生成了莫来石,一部分结晶为方英石;④煅烧高岭石Si、Al活性总体上随着煅烧温度的增高逐渐增强,其中Al的活性在900℃时达到最高,Si在1100℃时达到最高,当温度超过这两个临界点时,Si、Al活性将迅速下降。  相似文献   
395.
The Martabe Au–Ag deposit, North Sumatra Province, Indonesia, is a high sulfidation epithermal deposit, which is hosted by Neogene sandstone, siltstone, volcanic breccia, and andesite to basaltic andesite of Angkola Formation. The deposit consists of six ore bodies that occurred as silicified massive ore (enargite–luzonite–pyrite–tetrahedrite–tellurides), quartz veins (tetrahedrite–galena–sphalerite–chalcopyrite), banded sulfide veins (pyrite–tetrahedrite–sphalerite–galena) and cavity filling. All ore bodies are controlled by N–S and NW–SE trending faults. The Barani and Horas ore bodies are located in the southeast of the Purnama ore body. Fluid inclusion microthermometry, and alunite‐pyrite and barite‐pyrite pairs sulfur isotopic geothermometry show slightly different formation temperatures among the ore bodies. Formation temperature and salinity of fluid inclusions of the Purnama ore body range from 200 to 260 C and from 6 to 8 wt.% NaCl equivalent, respectively. Formation temperature and salinity of fluid inclusions of the Barani ore body range from 200 to 220 °C and from 0 to 2.5 wt.% NaCl equivalent and those of the Horas ore body range from 240 to 275 °C and from 2 to 3 wt.% NaCl equivalent, respectively. The Barani and Horas ore bodies are less silicified and sulfides are less abundant than the Purnama ore body. A relationship between enthalpy and chloride content indicates mixing of hot saline fluids with cooler dilute fluids during the mineralization of each of the ore bodies. The δ18O values of quartz samples from the southeast ore bodies exhibit a wide range from +4.2 to +12.9‰ with an average value of +7.0‰. The δ18O values of H2O estimated from δ18O values of quartz, barite and calcite confirm the oxygen isotopic shift to near meteoric water trend, which support the incorporation of meteoric water. Salinity of the fluid inclusions decrease from >5 wt.% NaCl equivalent in the Purnama ore body to <3 wt.% NaCl equivalent in the Barani ore body, indicating different fluid systems during mineralization. The δ34S values of sulfide and sulfate in Purnama range from ? 4.2 to +5.5‰ and from +1.2 to +26.7‰, those in the Barani range from ? 4.3 to +26.4‰ and from +3.9 to +18.5‰ and those in the Horas ore body range from ? 11.8 to +3.5‰ and from +1.4 to +25.7‰, respectively. The δ34S of total bulk sulfur in southeastern ore bodies (Σδ34S) was estimated to be approximately +6‰. The estimated sulfur fugacity during formation of the Purnama and Horas ore bodies is relatively high. It was between 10?4.8 and 10?10.8 atm at 220 to 260 °C. Tellurium fugacity was between 10?7.8 and 10?9.5 atm at 260 °C and between 10?9 and 10?10.6 atm at 220 °C in the Purnama ore body. The Barani ore body was formed at lower fS2, lower than about 10?14 atm at 200 to 220 °C based on the presence of arsenopyrite and pyrrhotite in the early stage, and between 10?14 and 10?12 atm based on the existence of enargite and tennantite in the last stage. © 2016 The Society of Resource Geology  相似文献   
396.
The East Sulawesi Ophiolite (ESO) is tectonically dismembered and widely distributed in Central and East Sulawesi. It comprises, from base to top, residual mantle peridotite and mafic–ultramafic cumulate through layered to isotropic gabbro, to sheeted dolerites and basaltic volcanic rocks. Residual peridotite is dominantly spinel lherzolite intercalated with harzburgite and dunite. Ultramafic rocks from different locations display significant differences in rock composition and mineral. However, the clinopyroxene of peridotite displays REE pattern similarities with those of mid-ocean ridge (MOR) origin, rather than those of suprasubduction zone (SSZ) origin. The gabbroic unit consists of massive gabbro, layered gabbro, mafic and ultramafic cumulate and anorthosite. The observed crystallization sequence of gabbroic unit, which is olivine→(spinel)→plagioclase→clinopyroxene→(orthopyroxene)→(hornblende), and the mineral chemistry data indicate that the ESO gabbro has similarities with MOR setting.Major and trace element geochemistry of basalt and dolerite suggests MOR, oceanic plateau and minor SSZ origins. A possible oceanic plateau origin is supported by the following: (i) the 15-km thickness is comparable with the thickness of oceanic plateau rather than normal oceanic lithosphere; (ii) there are no or only minor olivine phenocrysts in the basalt; and (iii) predominance of aphyric texture in the basalts. The REE pattern of ESO basalt exhibits N-MORB-like signatures. However, a negative Nb anomaly in the trace element spider diagram may be attributed to mantle heterogeneity of an OPB source.The geochemical variations and disparities for both peridotite and basalt and the noncogenetic relationship between crust and mantle sections in several locations suggest that the ESO may have been formed at one tectonic setting and was later overprinted by magmatism in different environments through its birth to emplacement. A possible Cretaceous origin of an oceanic plateau component of the ESO is indicated on the basis of calculated paleopositions using plate trajectory analyses together with previously published paleolatitude data. The ESO can be traced back to the proximity of the presently active region of the SW Pacific Superplume.  相似文献   
397.
Concentrations of radon 222Rn andair pollutants, meteorological parametersnear the surface and vertical profiles of meteorological elements were measured atUchio (Okayama City, Okayama Prefecture, Japan) 12 km north from the coast ofthe Inland Sea of Japan. In the nighttime, the 222Rn concentration increased in the case of weak winds, but did not increase as much in the case of moderate or strong winds, as had been expected. In the daytime, the 222Rn concentrationheld at a slightly higher than average level for the period from sunrise to about 1100 JST. It is considered that this phenomenon is due to a period of morning calm, that is, a transition period from land breeze to sea breeze.NO, which is sensitive to traffic volume,brought information concerning advection.Oxidant concentrations,which reflect the availability of sunlight,acted in the reverse manner to 222Rnconcentrations. Thus, a set of 222Rn and air pollutants could provide useful information regarding the local conditions of the atmospheric boundary layer.  相似文献   
398.
A numerical technique for detecting the number and shape of subsurface cavities is presented, applying the particle filter and the parametric level set method to elastic wave propagation under the ground. When subsurface cavities exist, the elastic wave propagating in the ground is reflected at the boundary faces of the cavities. Observing the velocity of the reflection wave at the surface of a ground that includes multiple cavities and parameterizing the shape of the cavities by the parametric level function, both the number and the shape of the cavities can be identified by the particle filter. Numerical experimentation for detecting multiple cavities is conducted with synthetic observation data. The results show that the proposed technique enables the number of cavities to be identified by the number of peaks in the posterior probabilistic distribution function and solves geometric inverse problems by estimating the shape of the cavities through the parameter identification of the level set function.  相似文献   
399.
On the sub-kilometer S-type asteroid, 25143 Itokawa, some boulders on rough terrains seem to be exposed without any powdery material covering. Based on surface morphological features, there are two major types of boulders: one has rounded edges and corners (rounded boulders), while the other has angular edges and corners (angular boulders). The surface features of the rounded boulders suggest that they have hardness heterogeneity and that some may be breccias. The angular boulders appear to be more resistant to impact disruption than the rounded ones, which may be due to a difference in lithology. The major constituents of Itokawa may be LL chondrite-like brecciated lithology (rounded boulders) along with a remarkable number of boulders suggesting that lithology is atypical among LL chondrites (angular boulders). Some of both types of boulders contain intersecting and stepped planar foliations. Comparison with meteorite ALH76009 suggests that the planar foliations may be marks where rocks were torn apart. As lithified breccias cannot be formed on present-day sub-kilometer-sized Itokawa, it is reasonable that boulders with various lithologies on Itokawa were formed on its large ancestor(s). The rubble-pile structure of Itokawa suggested by its low density (∼1.9 g/cm3) indicates that boulders on Itokawa are reassembled fragments formed by catastrophic disruption of large ancestor(s).  相似文献   
400.
We present the results of a spectroscopic multisite campaign for the β Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with eight different telescopes in a time span of 11 months. In addition, we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the slowly pulsating B-stars (SPB)-like g -mode with frequency 0.3428 d−1 reported before is detected in our spectroscopy. We identify the four main modes as  (ℓ1, m 1) = (1, 1), (ℓ2, m 2) = (0, 0), (ℓ3, m 3) = (1, 0)  and  (ℓ4, m 4) = (2, 1)  for   f 1= 5.178 964 d−1, f 2= 5.334 224 d−1, f 3= 5.066 316 d−1  and   f 4= 5.490 133 d−1  , respectively. Our seismic modelling shows that f 2 is likely the radial first overtone and that the core overshooting parameter  αov  is lower than 0.4 local pressure scale heights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号