首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   2篇
  国内免费   7篇
测绘学   5篇
大气科学   5篇
地球物理   39篇
地质学   98篇
海洋学   12篇
天文学   17篇
综合类   3篇
自然地理   8篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   13篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   14篇
  2016年   15篇
  2015年   6篇
  2014年   14篇
  2013年   24篇
  2012年   16篇
  2011年   8篇
  2010年   4篇
  2009年   11篇
  2008年   5篇
  2006年   1篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
181.
182.
Uranium and thorium isotopic composition of kasolite [Pb(UO2)SiO4-(H2O)] from Jabal Sayid area was determined by thermal ionization mass spectrometry. Secondary electron imaging, back-scattered electron imaging, and energy dispersive spectral scans were used to investigate the mineralogical characteristics of this uranyl mineral phase. Distinct crystal faces and crystal growth of kasolite from the study area confirm mineral precipitation near the surface from the circulating groundwater. The obtained data were used to interpret the mechanism of uranium mobility in Jabal Sayid weathering profile and to construct a tentative model to explain the isotopic evolution of uranium and thorium. This model indicates that (1) uranium was leached at depth, (2) uranyl mineralization was precipitated along fractures and cavities in the host rocks during humid conditions and pluvial periods, (3) preferential leaching of 234U from uranyl mineralization by recoil processes was continuous indicative of a weakly circulating groundwater, and (4) 234U-deficiency resulted in isotopic signatures characterized by low 234U/238U and high 230Th/234U ratios. The modification pattern of these activity ratios suggests that uranyl mineralization of Jabal Sayid, most probably, has been precipitated during the same Late Quaternary pluvial periods responsible for the formation of the corresponding mineralizations in the Eastern Desert of Egypt.  相似文献   
183.
The groundwater extracted from the unconfined Quaternary aquifer is the main source of water supply in El-Tur area. The area is bounded from the east by the elevated basement complex of Southern Sinai and from the west by El-Qabaliyat Ridge. The wadis dissecting these highlands form effective watersheds of the Quaternary aquifer. These wadis form areas of focused recharge. Recharge also occurs directly via the Quaternary sediments covering El-Qaa Plain. Subsurface lateral groundwater flow from the fractured basement contributes significant recharge to the aquifer as well. The aquifer sediment facies affect the type and quality of groundwater. In the eastern part where the aquifer is composed mainly of gravel and coarse sand with fragments of weathered basement, the Na-Cl-SO4 water dominates. In the west where the facies change is rapid and complex, many water types arise. The base exchange index (BEX) is positive in this part reflecting the role of clay minerals in changing the water types via cation exchange. In the east where clays are insignificant in the aquifer, the BEX is negative. In the western part next to El-Qabaliyat Ridge, the wells discharging from the calcareous sand zone have low groundwater salinities compared to the wells discharging from the alluvium. In general, the groundwater salinity increases in the direction of groundwater flow from the northeast to the southwest which reflects the dissolution of aquifer sediments. The concentration relationships between the major ions on one hand and chloride on the other reflect the dissolution of calcium carbonates, precipitation of K- and Mg-bearing minerals, and cation exchange of Ca for Na on clay minerals. The hydrochemical models support these reactions. In addition, they show that the effect of evaporation on the recharge water in the western catchment is about four times its effect on the eastern recharge water which reflects the rapid recharge through the wadis draining the fractured basement. Moreover, the contribution from the eastern catchment in sample No. 23 is more than four-folds the contribution from the western recharge area. The stable isotopes (2H and 18O) show that the Quaternary aquifer is recharging from recent rainfall. However, upward leakage of Paleogene groundwater (depleted in 18O) also occurs. The groundwater level map shows strong overpumping impact especially in the areas close to El-Tur city.  相似文献   
184.
Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes “Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae”. Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.  相似文献   
185.
Optical microscopy, X-ray diffraction (XRD), and back-scattered electron imaging (BSE) have been used to determine the mineralogical composition of the uraniferous iron and manganese oxides and the associated U-minerals hosted in biotite granite that occurred north east Gabal El Sela area south Eastern Desert, Egypt. These mineralizations were found as veinlets fractures filling associated with strongly kaolinitic alteration of the coarse-grained biotite granite. XRD determined that the geothite mineral form the main constituent of uraniferous iron oxide in addition to tapiolite, and kaolinite minerals, where as uraniferous manganese oxide composed of pyrolusite, ramsdellite, and cryptomelane. BSE confirmed that the associated uranium minerals represented by uranothorite, kazolite, and zentime in addition to columbite-bearing minerals. Uranothorite and columbite-bearing minerals are the most abundant minerals in this mineralization. Petrographically, biotite granite is composed mainly of quartz, in addition to K-feldspars, biotite and muscovite with minor zircon, garnet, apatite, uranium-rich thorite and iron oxide. Petrochemical studies and tectonic discrimination diagrams for this granite reveal that they are classified as granite to alkali feldspar granite, originated from calc-alkaline magma having peraluminous nature and developed in within-plate tectonic environment. Field radiometric measurements revealed the localization of two high radiometric anomalies associated with iron and manganese oxides, within this anomaly uranium content range from 65 to 85 ppm. Alpha Track-etch Detectors of radon gas registrations revealed high track density reach up to 15,448.7 Bq/m3.  相似文献   
186.
We utilized the seismicity and the potential field data to study the tectonic deformation and to delineate the seismically active subsurface tectonic trends of El-Faiyum area. To accomplish these goals, we analyzed and interpreted the seismicity data, the reduced to pole total magnetic intensity, and the Bouguer anomaly maps. We also used the spatial distribution of the recent seismic events and the focal mechanism to outline the local seismic zones that control the seismicity of the study area and to determine the sense of the motion along the subsurface active faults. The focal mechanism of the recent seismic events and the interpreted subsurface tectonic faults from the potential field data reflect strike-slip movements with normal components along the subsurface active faults. The gravity and magnetic maps show a NE-SW regional trend with low gravity and magnetic values. The NE-SW regional trend extends across the whole area and could be related to the Pelusium Megashear fault. A NE-SW trend with high gravity and magnetic exists at the northern part and coincides with the Kattania Uplift and the basaltic flows in Gabal Qatrani area. The gravity and magnetic maps also reveal several local anomalies with different polarities, amplitudes, and extensions, which reflect anticlinal and synclinal structures on the basement surface. The seismotectonic map, generated by linking the basement structure map and the spatial distribution of the recent earthquake foci, reveals the dominant tectonic trends and the subsurface active faults.  相似文献   
187.
In ancient Egypt, lakes, canals, and other water bodies were an essential part of the sacred landscape in which temples were embedded. In recent years, geoarchaeological research at the site of the Temple of Bastet at Bubastis in the southeastern Nile Delta has proven the existence of two water canals surrounding the temple. It has now been investigated whether these canals were connected to the Temple of Pepi I (2300–2250 B.C.E.), located approximately 100 m to the west of the Temple of Bastet. To explore the Holocene landscape genesis of the Temple of Pepi I, 15 drillings and six geoelectrical profile lines were performed in the surroundings of the temple in spring 2022. The results show loamy to clayey sediments in deeper sections of all drillings with a maximum thickness of 1.70 m, indicating a marshy or swampy depositional environment. Based on the recovered sediment sequences and archaeological remains in the vicinity of the Temple of Pepi I, the marshy or swampy area existed before the Fourth Dynasty. During the Old Kingdom (ca. 2850–2180 B.C.E.), the former marshland either dried up through natural processes or was intentionally drained and filled with sediments for subsequent use for occupation. Regarding the original research question, there is as yet no evidence for a direct connection to the canals of the Temple of Bastet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号