首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   15篇
  国内免费   7篇
测绘学   10篇
大气科学   21篇
地球物理   76篇
地质学   111篇
海洋学   31篇
天文学   19篇
综合类   2篇
自然地理   17篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   1篇
  2018年   11篇
  2017年   12篇
  2016年   7篇
  2015年   12篇
  2014年   8篇
  2013年   13篇
  2012年   7篇
  2011年   17篇
  2010年   11篇
  2009年   24篇
  2008年   19篇
  2007年   18篇
  2006年   8篇
  2005年   10篇
  2004年   13篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   8篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
排序方式: 共有287条查询结果,搜索用时 31 毫秒
61.
The first evidence for ultrahigh-pressure (UHP) metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides is recorded by kyanite-bearing eclogite, found in a basic dyke within a garnet peridotite body exposed close to the lake Friningen in northern Jämtland (central Sweden). UHP metamorphic conditions of ~ 3 GPa and 800 °C, within the stability field of coesite, are constrained from geothermobarometry and calculated phase equilibria for the peak-pressure assemblage garnet + omphacite + kyanite + phengite. A prograde metamorphic evolution from a lower P–T (1.5–1.7 GPa and 700–750 °C) stage during subduction is inferred from inclusions of pargasitic amphibole, zoisite and kyanite in garnet cores. The post-UHP evolution is constrained from breakdown textures, such as exsolutions of kyanite and silica from the Ca-Eskola clinopyroxene. Near isothermal decompression of eclogite to lower crustal levels (~ 0.8–1.0 GPa ) led to formation of sapphirine, spinel, orthopyroxene and diopside at granulite facies conditions. Published age data suggest a Late Ordovician (460–445 Ma) age of the UHP metamorphism, interpreted to be related to subduction of Baltoscandian continental margin underneath an outboard terrane, possibly outermost Laurentia, during the final stages of closure of the Iapetus Ocean. The UHP rocks were emplaced from the hinterland collision zone during Scandian thrusting of the nappes onto the Baltoscandian foreland basin and platform. The record of P–T conditions and geochonological data from UHP rocks occurring within the allochthonous units of the Scandinavian Caledonides indicate that Ordovician UHP events may have affected much wider parts of the orogen than previously thought, involving deep subduction of the continental crust prior to final Scandian collision between Baltica and Laurentia.  相似文献   
62.
Although the importance of ENSO on hydrological anomalies has been recognized, variations in sediment fluxes caused by these extreme events are poorly documented. The effect of ENSO is not limited to changes in sediment mobilization. Since ENSO events can affect terrestrial ecosystems, they may have important effects on sediment production and transport in river basins over time spans that are longer than the duration of the event itself. The Catamayo‐Chira basin is an interesting casestudy for investigating these geomorphic implications. The objectives were: (i) to study the effect of ENSO on stream flow and sediment yields in the basin, (ii) to investigate if ENSO events affect sediment yields in the post‐ENSO period and (iii) to understand which factors control the ENSO and post‐ENSO basin response. During strong negative ENSO periods, mean annual stream flow discharge at the inlet of the Poechos reservoir in the lower basin was 5.4 times higher than normal annual discharges, while average sediment fluxes exceeded those of normal years by a factor of about 11. In two heavily affected periods, 45.9% of the total sediment yield in the 29 years observation period was generated. Sediment fluxes in the post‐ENSO period are lower than expected, which proves post‐ENSO event dynamics are significantly different from pre‐event dynamics. Our analysis indicates the increase of vegetation growth in the lower basin is not the main reason explaining considerable sediment flux decrease in post‐ENSO periods. During strong ENSO events, sediment in alluvial stores in the lower part of the basin is removed due to enlarging and deepening of channels. In post‐ENSO periods, normal discharges and persisting sediment supplies from the middle/upper basin lead to river aggradation and storage of large amounts of sediment in alluvial plains. The decrease in sediment export will last for several years until the equilibrium is re‐established. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
63.
Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady‐state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice‐sheet‐thickness‐modulated, down‐ice‐decreasing hydraulic heads. In relation to non‐glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice–bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo‐ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice–bed interface. Owing to the abundance of low‐permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
64.
A discussion is presented about the mechanisms that govern the spatial and seasonal variability in sand-wave height and migration speed in the 4 km wide Marsdiep tidal inlet, the Netherlands. Since 1998, current velocities and water depths have been recorded with an ADCP that is mounted under the ferry ‘Schulpengat’. In this paper, the current measurements were used to explain the sand-wave observations presented in Buijsman and Ridderinkhof [this issue. Long-term evolution of sand waves in the Marsdiep inlet. I: high-resolution observations. Continental Shelf Research, doi:10.1016/j.csr.2007.10.011]. Across nearly the entire inlet, the sand waves migrate in the flood direction. In the flood-dominated southern part of the inlet, the ‘measured’ (i.e. based on sand-wave shape and migration speed) and predicted bedload transport agree in direction, magnitude, and trends, whereas in the ebb-dominated northern part the predicted bedload and suspended load transport is opposite to the sand-wave migration. In the southern part, 55% of the bedload transport is due to tidal asymmetries and 45% due to residual currents. In addition to the well-known tidal asymmetries, asymmetries that arise from the interaction of M2M2 and its overtides with S2S2 and its compound tides are also important. It is hypothesised that in the northern part of the inlet the advection of suspended sand and lag effects govern the sand-wave migration. The relative importance of suspended load transport also explains why the sand waves have smaller lee-slope angles, are smaller, more rounded, and more three-dimensional in the northern half of the inlet. The sand waves in this part of the inlet feature the largest seasonal variability in height and migration speed. This seasonal variability may be attributed to the tides or a seasonal fluctuation in fall velocity. In both cases sediment transport is enhanced in winter, increasing sand-wave migration and decreasing sand-wave height. The influence of storms and estuarine circulation on the sand-wave variability is negligible.  相似文献   
65.
The coastal environment shows a wide range of bed patterns, for which sandwaves and sandbanks are among the most common. Less known in this context is the high benthic diversity in the coastal environment, which gives rise to the question to what extend the benthos interacts with the shape of the seabed. This paper reviews field and flume experiments on bio-geomorphological influences between benthos and sediment and tests the hypothesis that both the occurrence and the dimensions of sandwaves are dependent on the benthic diversity in the North Sea. Mathematical inclusions to account for biological activity in idealized models reveal that biota is able to influence the wavelength of sandwaves significantly, compared to the default case. More importantly, the models indicate that biota is able to induce bed patterns under conditions when the physical parameters suggest a stable flat bed and vice versa. Present model explorations indicate that future research should focus on the parameterization of subtidal biological activity on sediment dynamics and thereby on seabed patterns. Such knowledge will enable process-based modeling of the spatial and temporal variation in biological activity on seabed morphodynamics and validate the proposed modeling approach with field measurements.  相似文献   
66.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   
67.
Chemical partitioning data are of fundamental interest to exploration geochemists. This paper is one of the few studies which has investigated the relative proportions of the rare elements in various soil extracts. The dispersion of trace elements from weathering pegmatites in Powhatan Country, Virginia, was found to be restricted to the immediate vicinity of the pegmatites. A sequential extraction procedure was used to measure the distribution of Be, La, Nb, Sn, U, Li, and Ni,among the following fractions of the B soil horizons: exchangeable, Fe and Mn oxyhydroxide, residual, and aqua regia digestion. The elements Sn, Be, Li, and U were found to be associated with soils over the complex Herbb No. 2 pegmatite, whereas La and Ni were generally associated with the background soils.A geochemical exploration model was developed using stepwise discriminant function analysis to determine the combination of elements and soil extracts that best differentiates between complex pegmatitic, simple pegmatitic, and background soils. Log-transformed aqua regia extract concentrations of Sn, La, U, and Li were the most effective variables when used to separate complex pegmatitic from simple pegmatitic soils.  相似文献   
68.
This paper contains an account of UN/EEC-sponsored research on water quality monitoring and assessments in the catchments areas of Europe's 10 transboundary rivers. In this context, water quality assessments established on the basis of monitoring data for Poland's rivers are discussed. Consideration is also given to the water quality assessment methods recommended by the EU Directives. The problem has been exemplified by the analysis of water quality variations in the transboundary river Odra in the time span of 1973–2003. For the years 1993–2003, the trends in water quality variations are calculated and the rates of variation are analysed. The points in time when the water quality will have attained the second class purity values are predicted, taking into account the requirements specified in Polish, Czech and German standards. Analysis of the trends in the variations of pollution parameters has revealed that the achievability of good water quality depends on the limit values adopted for the assessment.  相似文献   
69.
Cordierite — (Mg,Fe)2Al4Si5O18 — occurs as porphyroclasts within metapelitic and metavolcanic rocks from the Kemiö-Orijärvi belt, SW Finland. After crystallisation the cordierites have been deformed at temperatures between 550–825° C and pressures of 3–5 kbar. Optical microscopy reveals the following deformation-induced microstructures: a bimodal size distribution between host, 0.3 to 4.0 mm, and recrystallised (new) grains, 0.1 to 0.5 mm; the intracrystalline defect-structures of host grains yield undulatory extinction, subgrains and some twinning. Recrystallised grains are optically strain free. Grain and subgrain boundaries are generally straight and parallel to crystallographic low-index planes. Orientation distribution diagrams for host and recrystallised grains yield similar fabric diagrams, i.e. [010] perpendicular to foliation -S-, [001] and [100] parallel to S and [001] parallel to lineation -L-. The fabric diagrams indicate that [001] (010) is the dominant slip system. Transmission electron microscopy reveals straight free dislocations, glide and climb loops, minor {130} and {110} microtwins, isolated nodal points and dislocation walls. Contrast analyses yield Burgers vector b = [001] being dominant and b = [100] subordinate. Climb loops consist of 〈c〉-dislocations that are dissociated in (001) planes, glide loops are defined by [100] [010] and [001] (100). The cordierite microstructures have been interpreted to be generated by dislocation creep. The dominant recrystallisation mechanism is thought to be subgrain rotation subsequently followed by minor grain or twin-band boundary migration.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号