首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
测绘学   1篇
大气科学   3篇
地球物理   7篇
地质学   3篇
海洋学   4篇
天文学   12篇
自然地理   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1987年   1篇
  1966年   1篇
排序方式: 共有31条查询结果,搜索用时 0 毫秒
21.
The evolution of size, sinking velocity, and dry weight of aging discarded appendicularian houses, a component of marine snow, were examined in laboratory experiments. The sizes of discarded houses decrease over time, with a rapid deflation during the first hour, followed by a slower rate of compression leading to a total of 60% and 87% decrease in diameter after 1 h and 5 d, respectively. The initial rapid deflation of the houses is accompanied by a massive loss of its particle content and a 10–63% loss in weight. The initial weight loss is left as a trail of elevated particle and solute concentration in the wake of the sinking house. Subsequently the house weight decreases at a much lower rate that is consistent with bacterial degradation. The combined effect of weight losses and deflation–compression process is an increase in the sinking speed of the houses, by a factor of 1.7–6 after 1.5–3 d. These processes can provide a new insight on the sinking dynamic and flux of appendicularian produced marine snow from in situ observations. We applied our laboratory derived rates to field data from the East Atlantic Ocean and estimate that large (2000–4000 μm) houses account for about 1/3 of the 300–500 μm particles in the upper 100 m and loose 30% of their mass before leaving the upper 200 m. The observed deflation–compression process may have several consequences on the dynamics of appendicularian-derived marine snow particles. First, it may explain field observations that marine snow sinking velocities increase with depth. Second, an initial rapid loss of weight and particles will decrease the potential vertical flux of particulate carbon due to appendicularians. And finally, the trail of particles and solutes may guide zooplankton to the sinking house, and further increase its degradation due to grazing by detrivorous organisms.  相似文献   
22.
Alignment is defined as the tendency of the distribution of pointing angles between the major axes of clusters and their nearest neighbours to be more concentrated towards small values for small nearest neighbour distances, whereas the distribution is expected to be uniform over all angles at larger distances. Conflicting pronouncements on the reality of this effect have been published in the astronomy literature. A re-assessment of the evidence for alignment is presented, based on three recently published X-ray data sets. We find that whereas there is evidence for alignment, it is not as convincing as previously claimed. In particular, the scale to which the effect has been claimed to extend seems to have been severely overstated.  相似文献   
23.
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.  相似文献   
24.
25.
The American Association of Variable Star Observers supplies the astronomical community with a large data base of times of light maxima and minima of Mira (long-period pulsating) stars. Period change studies using these data invariably use either times between maxima, or those between minima. A statistical analysis based on the two-component time series of light curve rise and fall times is developed. The results, which enable one to detect changes in the shapes of light curves, are applied to observations of seven long-period variables.  相似文献   
26.
As a part of the ANR-Forclim experiment, particle mass fluxes and sedimentation processes were investigated on the slope of Aquitanian margin of the Bay of Biscay, between the canyons of Cap-Breton and Cap-Ferret. Interface sediments were collected along a depth transect from 145 to 2000 m; simultaneously a mooring line was deployed at the deepest station (WH, 2000 m) with two traps (800 and 1700 m) for a 16-month period (June 2006–November 2007). 210Pb activities of settling particles and of interface sediments were determined to study transport processes of particles. Sediment and mass accumulation rates, calculated from excess 210Pb profiles in the sediment column, show the expected decreasing trend with depth, as usually observed on margins. Mean particulate mass fluxes at 800 and 1700-m depth at site WH are, respectively, 27 and 70 g m?2 a?1.The 210Pb budget points out events of temporary high lateral input of particles. The comparison of mass and 210Pb fluxes between the water column and the seabed indicates that lateral transport plays an important role in particle accumulation on the Aquitanian margin. Regarding the objectives of the ANR-Forclim program, which aims to improve significantly the interpretation of fossil foraminifera signals, as a proxy for hydrological changes in the North Atlantic ocean, these results highlight advection processes must be considered when interpreting fluxes of foraminifers on the Aquitanian margin.  相似文献   
27.
Simulation of the Micro-physics of Rocks Using LSMearth   总被引:4,自引:0,他引:4  
-- The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (M0ra and Place, 1994; Place and Mora, 1999). A new modular and flexible LSM approach has been developed that allows different micro-physics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.  相似文献   
28.
The formations of the Jura and the Salève show definite characters of epicontinental sedimentation, such as carbonates, biodetrital limestones and corresponding faunas. In nearby Savoy, conditions are different and correspond to deeper sea deposits, clayish limestones, clays and reducing conditions with Cephalopods and pelagic microfauna. Between the two areas, the authors suppose the existence of a mobile and permanent flexure. They give its extension and general features.  相似文献   
29.
This study investigates past sea level reconstruction (over 1950–2003) based on tide gauge records and EOF spatial patterns from different 2-D fields. In a first step, we test the influence on the reconstructed signal of the 2-D fields temporal coverage. For that purpose we use global grids of thermosteric sea level data, available over 1950–2003. Different time spans (in the range 10–50 yr) for the EOF spatial patterns, and different geographical distributions for the 1-D thermosteric sea level time series (interpolated at specific locations from the 2-D grids), are successively used to reconstruct the 54-year long thermosteric sea level signal. In each case we compare the reconstructed trend map with the reference. The simulation indicates that the longer the time span covered by the spatial EOFs, the closer to the reference the reconstructed thermosteric sea level trends. In a second step, we apply the method to reconstructing 2-D sea level data over 1950–2003, combining sparse tide gauge records available since 1950, with EOF spatial patterns from different sources: (1) thermosteric sea level grids over 1955–2003, (2) sea level grids from Topex/Poseidon satellite altimetry over 1993–2003, and (3) dynamic height grids from the SODA reanalysis over 1958–2001. The reconstructed global mean sea level trend based on thermosteric EOFs (case 1) is significantly lower than the observed trend, while the interannual/decadal sea level fluctuations are well reproduced. Case 2 (Topex/Poseidon EOFs over 1993–2003) leads to a global mean sea level trend over the 54-year time interval very close to the observed trend. But the spatial trends of the reconstruction over 1950–2003 are significantly different from those obtained with thermosteric EOFs. Case 3 (SODA EOFs over 1958–2001) provides a reconstruction trend map over 1950–2003 that differs significantly from the previous two cases. We discuss possible causes for such differences. For the three cases, on the other hand, reconstructed spatial trends over 1993–2003 agree well with the regional sea level trends observed by Topex/Poseidon.  相似文献   
30.
In this paper we compare sea level trends observed at a few selected tide gauges of good quality records with thermosteric (i.e., due to ocean temperature change) sea level trends over 1950–1998 using different gridded ocean temperature data sets from Levitus et al. (2000) [Levitus, S., Stephens, C., Antonov, J.I., Boyer, T.P., 2000. Yearly and Year-Season Upper Ocean Temperature Anomaly Fields, 1948–1998. U.S. Gov. Printing Office, Washington, D.C. pp. 23.], Ishii et al. (2003) [Ishii, M., Kimoto, M., Kachi, M., 2003. Historical ocean subsurface temperature analysis with error estimates, Mon. Weather Rev., 131, 51–73.] and Levitus et al. (2005) [Levitus S., Antonov, J.I., Boyer, T.P., 2005. Warming of the world ocean, 1955–2003. Geophys. Res. Lett. 32, L02604. doi:10.1029/2004GL021592.]. When using the Levitus data, we observe very high thermosteric rates at sites located along the northeast coast of the US, north of 37°N. Such high rates are not observed with the Ishii data. Elsewhere, thermosteric rates agree reasonably well whatever the data set. Excluding the northeast US coastline sites north of 37°N, we compare tide gauge-based sea level trends with thermosteric trends and note that, in spite of a significant correlation, the latter are too small to explain the observed trends. After correcting for thermosteric sea level trends, residual (observed minus thermosteric) trends have an average value of 1.4 ± 0.5 mm/year, which should have an eustatic (i.e., due to ocean mass change) origin. This result supports the recent investigation by Miller and Douglas (2004) [Miller, L., Douglas, B.C., 2004. Mass and volume contributions to 20th century global sea level rise. Nature 428, 406–408.] which suggests that a dominant eustatic contribution is needed to explain the rate of sea level rise of the last decades observed by tide gauges, and shows that Cabanes et al. (2001) [Cabanes, C., Cazenave, A., Le Provost, C., 2001. Sea level rise during past 40 years determined from satellite and in situ observations. Science 294, 840–842.] arrived at an incorrect conclusion due to peculiarities in the gridded Levitus et al. (2000) [Levitus, S., Stephens, C., Antonov, J.I., and Boyer, T.P., 2000. Yearly and Year-Season Upper Ocean Temperature Anomaly Fields, 1948–1998. U.S. Gov. Printing Office, Washington, D.C. pp. 23.] data set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号