全文获取类型
收费全文 | 125252篇 |
免费 | 1478篇 |
国内免费 | 1601篇 |
专业分类
测绘学 | 3543篇 |
大气科学 | 8365篇 |
地球物理 | 24200篇 |
地质学 | 47111篇 |
海洋学 | 10287篇 |
天文学 | 25852篇 |
综合类 | 2415篇 |
自然地理 | 6558篇 |
出版年
2022年 | 757篇 |
2021年 | 1282篇 |
2020年 | 1362篇 |
2019年 | 1505篇 |
2018年 | 7450篇 |
2017年 | 6532篇 |
2016年 | 5718篇 |
2015年 | 1871篇 |
2014年 | 3306篇 |
2013年 | 5409篇 |
2012年 | 4391篇 |
2011年 | 6910篇 |
2010年 | 5904篇 |
2009年 | 7245篇 |
2008年 | 6254篇 |
2007年 | 6818篇 |
2006年 | 4334篇 |
2005年 | 3204篇 |
2004年 | 3294篇 |
2003年 | 3094篇 |
2002年 | 2911篇 |
2001年 | 2444篇 |
2000年 | 2339篇 |
1999年 | 1811篇 |
1998年 | 1872篇 |
1997年 | 1747篇 |
1996年 | 1469篇 |
1995年 | 1466篇 |
1994年 | 1253篇 |
1993年 | 1187篇 |
1992年 | 1125篇 |
1991年 | 1129篇 |
1990年 | 1136篇 |
1989年 | 995篇 |
1988年 | 908篇 |
1987年 | 1071篇 |
1986年 | 910篇 |
1985年 | 1148篇 |
1984年 | 1290篇 |
1983年 | 1237篇 |
1982年 | 1140篇 |
1981年 | 1077篇 |
1980年 | 1008篇 |
1979年 | 880篇 |
1978年 | 898篇 |
1977年 | 763篇 |
1976年 | 747篇 |
1975年 | 741篇 |
1974年 | 718篇 |
1973年 | 791篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
Vegetation is a natural source of Volatile Organic Compounds (VOC) that plays an important role in atmospheric chemistry. The main objective of the current study is to implement a model to quantify process-based VOC emissions from plants that focuses on the relationship between the sensitivity of VOC emission estimates to spatial resolution data, based on scientific knowledge and vegetation dynamics derived from satellite observations. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were elected to examine this issue using different resolutions of satellite-derived products: 22m from the DEIMOS-1 satellite, and 250m and 1000m provided by MODIS. The study is focused on an area of 80×80km2 in Portugal for 2011. Detailed land cover and meteorological data are also included in the emission quantification algorithm. The primary outcomes were determined using a multi-scale analysis showing spatial and temporal variations in the vegetation parameters and modeling results. The results confirm that the emissions model is highly sensitive to the spatial resolution of the satellite-derived data, resulting in about a 30% difference in total isoprene emissions for the study area. 相似文献
862.
Javad Ashjari Mojtaba Noori Reza Azimi Mohammad Nakhaei 《Arabian Journal of Geosciences》2016,9(3):227
Hydrogeologically, faults may impede, conduit, exert no influence, or may play a combination of these roles on groundwater flow. The object of this paper is to study the hydrogeological role of the Tabarteh fault, which is located on the border of Zagros and Central Iran tectonic zones in an alluvial aquifer. The recorded data of water table levels, chemical parameters, and discharge rate of wells, in addition to geological maps and geophysical results, were collected and evaluated. The outcrop of travertine in limited areas and the emergence of a few small springs within the alluvium show a barrier role of the fault in the groundwater flow. The spatial analysis of chemical components, head time series, and groundwater flow direction assessment demonstrated that the fault acts as both a barrier and a non-barrier in different sections. The multivariate statistical methods of cluster and discriminant analyses also confirm the dual role of the fault. 相似文献
863.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans. 相似文献
864.
Patterns of Nd and Sr isotopic ratios produced by magmatic and post-magmatic processes in the Shiant Isles Main Sill, Scotland 总被引:3,自引:0,他引:3
K. A. Foland F. G. F. Gibb C. M. B. Henderson 《Contributions to Mineralogy and Petrology》2000,139(6):655-671
The Shiant Isles Main Sill of the British Tertiary Igneous Province is a classic example of a differentiated, alkaline basic
sill. Four separate intrusions, each emplaced internally in rapid succession, form a 165-m-thick sill hosted by Lower Jurassic
sedimentary rocks. Extensive Nd and Sr isotopic studies were conducted on samples from a vertical section through the sill
where the relationships of samples to one another are well defined. The results illuminate patterns of modification of isotopic
ratios and clarify the petrogenesis (magma sources, crustal contamination), magmatic processes (bulk mixing, interstitial
liquid mixing), and post-magmatic alteration (hydrothermal effects on Sr and Nd). Overall, the whole-rock initial 87Sr/86Sr ratios range from ∼0.7037 to 0.7061 while initial 143Nd/144Nd ratios vary from ∼0.51243 to 0.51286 (ɛNd∼−0.7 to +5.7) – values that contrast markedly with those of the country rock. Acid leaching (HCl) of the whole-rock samples
that removes analcime indicates that most of the scatter in the 87Sr/86Sr is caused by the ubiquitous sub-solidus, aqueous alteration during which more-radiogenic Sr was introduced into the sill,
especially along the margins, and also reveals magmatic isotopic ratios. In contrast, Nd was immobile during fluid interaction
so that the sill 143Nd/144Nd ratios were not affected, even <1 m from the country-rock contact. Using leached rock values, 87Sr/86Sr and 143Nd/144Nd ratios are inversely correlated from magmatic processes. Magmas with two distinct isotopic compositions were involved:
a more primitive one with 143Nd/144Nd ∼0.51285 and 87Sr/86Sr ∼0.7035 that produced the first two intrusions and a more evolved one (with 0.51252 and 0.7048) that produced the third
intrusion. Mixing of the two magmas was very limited, restricted to near contacts between units, and apparently occurred by
interstitial melt migration. The more evolved crinanitic magma was probably produced from a batch of the more primitive picritic
melt by a small degree of crustal contamination and crystal fractionation during a short crustal residence prior to ascent
and emplacement.
Received: 20 December 1999 / Accepted: 5 May 2000 相似文献
865.
Phase fractional cycle biases (FCBs) originating from satellites and receivers destroy the integer nature of PPP carrier phase ambiguities. To achieve integer ambiguity resolution of PPP, FCBs of satellites are required. In former work, least squares methods are commonly adopted to isolate FCBs from a network of reference stations. However, it can be extremely time consuming concerning the large number of observations from hundreds of stations and thousands of epochs. In addition, iterations are required to deal with the one-cycle inconsistency among FCB measurements. We propose to estimate the FCB based on a Kalman filter. The large number of observations are handled epoch by epoch, which significantly reduces the dimension of the involved matrix and accelerates the computation. In addition, it is also suitable for real-time applications. As for the one-cycle inconsistency, a pre-elimination method is developed to avoid iterations and posterior adjustments. A globally distributed network consisting of about 200 IGS stations is selected to determine the GPS satellite FCBs. Observations recorded from DoY 52 to 61 in 2016 are processed to verify the proposed approach. The RMS of wide lane (WL) posterior residuals is 0.09 cycles while that of the narrow lane (NL) is about 0.05 cycles, which indicates a good internal accuracy. The estimated WL FCBs also have a good consistency with existing WL FCB products (e.g., CNES-GRG, WHU-SGG). The RMS of differences with respect to GRG and SGG products are 0.03 and 0.05 cycles. For satellite NL FCB estimates, 97.9% of the differences with respect to SGG products are within ±?0.1 cycles. The RMS of the difference is 0.05 cycles. These results prove the efficiency of the proposed approach. 相似文献
866.
Kiran Chand Thumaty Rakesh Fararoda Suresh Middinti Rajashekar Gopalakrishnan C. S. Jha V. K. Dadhwal 《Journal of the Indian Society of Remote Sensing》2016,44(1):31-39
Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1?×?1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area. 相似文献
867.
The thermal profile of a streambed is affected by a number of factors including: temperatures of stream water and groundwater, hydraulic conductivity, thermal conductivity, heat capacity of the streambed, and the geometry of hyporheic flow paths. Changes in these parameters over time cause changes in thermal profiles. In this study, temperature data were collected at depths of 30, 60, 90 and 150 cm at six streambed wells 5 m apart along the thalweg of Little Kickapoo Creek, in rural central Illinois, USA. This is a third-order low-gradient baseflow-fed stream. A positive temperature gradient with inflection at 90-cm depth was observed during the summer period. A negative temperature gradient with inflection at 30 cm was observed during the winter period, which suggests greater influence of stream-water temperatures in the substrate during the summer. Thermal models of the streambed were built using VS2DHI to simulate the thermal profiles observed in the field. Comparison of the parameters along with analysis of temperature envelopes and Peclet numbers suggested greater upwelling and stability in temperatures during the winter than during the summer. Upwelling was more pronounced in the downstream reach of the pool in the riffle and pool sequence. 相似文献
868.
Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada “single-well method” (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day). 相似文献
869.
The state of the art of modeling fluid flow in shale reservoirs is dominated by dual-porosity models which divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano-pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual-porosity models and Darcy’s law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of the complex flow mechanisms occurring in these reservoirs. This paper presents a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three porosity systems: inorganic matter, organic matter (mainly kerogen), and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of nano-pores and micro-pores in kerogen are incorporated into the simulator. The multiple-porosity model is built upon a unique tool for simulating general multiple-porosity systems in which several porosity systems may be tied to each other through arbitrary connectivities. This new model allows us to better understand complex flow mechanisms and eventually is extended into the reservoir scale through upscaling techniques. Sensitivity studies on the contributions of the different flow mechanisms and kerogen properties give some insight as to their importance. Results also include a comparison of the conventional dual-porosity treatment and show that significant differences in fluid distributions and dynamics are obtained with the improved multiple-porosity simulation. 相似文献