为解决矿山应急救援钻孔作业过程中井涌井漏事故预警预测困难等问题,建立了基于机器学习的钻进过程井涌井漏事故预警预测模型。首先对井涌井漏事故发生初期时的钻进参数进行事故表征参数分析;其次对事故表征参数进行数据清洗处理,在此基础上,通过XGBoost事故诊断预警模型对井涌井漏事故进行早期诊断识别;随后建立PSO-LSTM事故发展预测模型,对事故发生后的孔底压力参数发展趋势进行预测,提前掌握钻进事故发展状态;最后通过实际钻进数据对预警预测模型的有效性进行验证。结果表明:XGBoost事故诊断预警模型能根据总池体积、立管压力、出入口流量差和动力头负荷这4种钻进参数的异常变化,快速准确诊断钻进过程中的井涌井漏事故;PSO-LSTM事故发展状态预测模型能充分学习孔底压力参数发展规律,综合EMAP, EMA, ERMS and R2, the prediction performance of the PSO-LSTM models is the best compared with BP, RNN and SVM, capable of accurately predicting the development trend of the downhole pressure after the accident, thereby knowing about the severity and development situation of kick and lost circulation accidents. Generally, the research results enrich the early warning and prediction methods of kicks and lost circulation accidents in the drilling process, improve the reliability of surface rescue in mine accident, and have a reference and guiding effect on accident control during the emergency rescue drilling of mine. 相似文献