首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   8篇
  国内免费   7篇
测绘学   6篇
大气科学   13篇
地球物理   27篇
地质学   69篇
海洋学   12篇
天文学   16篇
综合类   1篇
自然地理   10篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   3篇
  2013年   10篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   10篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   10篇
  2001年   17篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   4篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1962年   1篇
排序方式: 共有154条查询结果,搜索用时 406 毫秒
141.
The gas-phase reactions of NO3 with 2-methyl-2-butene, isobutene,trans-butene, 1-butene and propene, were investigated in a flow-tube at room temperature. Experiments were performed in the pressure range 1–1000 mbar in synthetic air as well as at a total pressure of 800 mbar with varying concentrations of oxygen in nitrogen.The main products found were oxiranes, nitroxy-carbonyl compounds (ketonitrates) and ketones or aldehydes. The product distribution was a function of pressure. In each case, in synthetic air, the oxirane yield increased with decreasing total pressure up to a value of about 100% at pressures less than 1 mbar.It was concluded that oxirane is a product of the excited adduct radical formed in the electrophilic addition of NO3 to the double bond. Experiments with very low partial pressures of oxygen showed that the quenched adduct radicals also produce the corresponding oxirane.Under tropospheric conditions (1000 mbar synthetic air) the following yields of the corresponding oxiranes were found: 2-methyl-2-butene 9%, isobutene 7%,trans-butene 12%, 1-butene 18%, propene 28%. In the case oftrans-butene the total oxirane yield consists of 72%trans- and 28%cis-isomer.Dedicated to Professor Wolfgang Rolle on the occasion of his 60th birthday.  相似文献   
142.
The rivers in the Baltic Basin drain a mixture of bedrocks ranging from Mesozoic-Paleozoic sediments in the south to Proterozoic-Archean intrusives in the north. The rivers in the sedimentary basin in the south have high concentrations of Sr, in the interval 100–500 µg l–1 while the87Sr/86Sr ratio is close to that of seawater, i.e. 0.71. The northern rivers in the Precambrian shield area on the other hand have low Sr concentrations of 15–50 µg l–1 with high87Sr/86Sr ratios of about to 0.73 (0.721–0.745). The riverine input of dissolved Sr to the brackish Baltic Sea approaches 60 tons year–1, with a weighted mean concentration approaching 130 µg l–1 and a weighted mean87Sr/86Sr ratio close to 0.712. Although the sedimentary area in the south supplies only about 43% of the total river discharge, it gives about 88% of the total Sr input. Because of this and the strong regional riverine variation in87Sr/86Sr ratio, Sr and its isotopes seem to be a convenient tool to unveil mixing relations of water masses in the northern Baltic Sea, provided high resolution analyses are applied. For an overall characterization of water mixing in the Baltic Sea, the Nd system will be superior to that of Sr.  相似文献   
143.
144.
We used a novel system of three continuous wave Doppler radars to successfully record the directivity of i) Strombolian explosions from the active lava lake of Erebus volcano, Antarctica, ii) eruptions at Stromboli volcano, Italy, and iii) a man-made explosion in a quarry.  相似文献   
145.
陈瑞阁  周训  宋超  张欢  肖锐 《现代地质》2013,27(6):1465
海潮波动可以引起海岸带有越流的承压含水层地下水头发生波动。建立了基于有限差分法的滨海地区一维承压含水层地下水运动数值模型。通过将潮汐波动概化为正弦波,分别对初始水头水平及线性倾斜的承压含水层模拟了滨海地区有越流的承压含水层地下水头随潮汐波动的变化。通过对两种情形下的变化比较,结果表明,受海潮影响的滨海承压含水层地下水头与海潮有相似的波动特征,但变幅减小,受海潮的影响程度与离海岸的距离有关,随着离海岸距离的增加,地下水头的变幅及潮汐效率呈负指数函数衰减,水头倾斜情形下变幅更小,潮汐效率更小,滞后时间更短,地下水头对海潮的滞后时间随距离呈线性增加。  相似文献   
146.
J. Ågren 《Journal of Geodesy》2004,78(4-5):314-332
One important application of an Earth Gravity Model (EGM) is to determine the geoid. Since an EGM is represented by an external-type series of spherical harmonics, a biased geoid model is obtained when the EGM is applied inside the masses in continental regions. In order to convert the downward-continued height anomaly to the corresponding geoid undulation, a correction has to be applied for the analytical continuation bias of the geoid height. This technique is here called the geoid bias method. A correction for the geoid bias can also be utilised when an EGM is combined with terrestrial gravity data, using the combined approach to topographic corrections. The geoid bias can be computed either by a strict integral formula, or by means of one or more terms in a binomial expansion. The accuracy of the lowest binomial terms is studied numerically. It is concluded that the first term (of power H2) can be used with high accuracy up to degree 360 everywhere on Earth. If very high mountains are disregarded, then the use of the H2 term can be extended up to maximum degrees as high as 1800. It is also shown that the geoid bias method is practically equal to the technique applied by Rapp, which utilises the quasigeoid-to-geoid separation. Another objective is to carefully consider how the combined approach to topographic corrections should be interpreted. This includes investigations of how the above-mentioned H2 term should be computed, as well as how it can be improved by a correction for the residual geoid bias. It is concluded that the computation of the combined topographic effect is efficient in the case that the residual geoid bias can be neglected, since the computation of the latter is very time consuming. It is nevertheless important to be able to compute the residual bias for individual stations. For reasonable maximum degrees, this can be used to check the quality of the H2 approximation in different situations.Acknowledgement The author would like to thank Prof. L.E. Sjöberg for several ideas and for reading two draft versions of the paper. His support and constructive remarks have improved its quality considerably. The valuable suggestions from three unknown reviewers are also appreciated.  相似文献   
147.
The Kristineberg volcanic-hosted massive sulphide (VMS) deposit, located in the westernmost part of the Palaeoproterozoic Skellefte district, northern Sweden, has yielded 22.4 Mt of ore, grading 1.0% Cu, 3.64% Zn, 0.24% Pb, 1.24 g/t Au, 36 g/t Ag and 25.9% S, since the mine opened in 1941, and is the largest past and present VMS mine in the district. The deposit is hosted in a thick pile of felsic to intermediate and minor mafic metavolcanic rocks of the Skellefte Group, which forms the lowest stratigraphic unit in the district and hosts more than 85 known massive sulphide deposits. The Kristineberg deposit is situated lower in the Skellefte Group than most other deposits. It comprises three main ore zones: (1) massive sulphide lenses of the A-ore (historically the main ore), having a strike length of about 1,400 m, and extending from surface to about 1,200 m depth, (2) massive sulphide lenses of the B-ore, situated 100–150 m structurally above the A-ore, and extending from surface to about 1,000 m depth, (3) the recently discovered Einarsson zone, which occurs in the vicinity of the B-ore at about 1,000 m depth, and consists mainly of Au–Cu-rich veins and heavily disseminated sulphides, together with massive sulphide lenses. On a regional scale the Kristineberg deposit is flanked by two major felsic rock units: massive rhyolite A to the south and the mine porphyry to the north. The three main ore zones lie within a schistose, deformed and metamorphosed package of hydrothermally altered, dominantly felsic volcanic rocks, which contain varying proportions of quartz, muscovite, chlorite, phlogopite, pyrite, cordierite and andalusite. The strongest alteration occurs within 5–10 m of the ore lenses. Stratigraphic younging within the mine area is uncertain as primary bedding and volcanic textures are absent due to strong alteration, and tectonic folding and shearing. In the vicinity of the ore lenses, hydrothermal alteration has produced both Mg-rich assemblages (Mg-chlorite, cordierite, phlogopite and locally talc) and quartz–muscovite–andalusite assemblages. Both types of assemblages commonly contain disseminated pyrite. The sequence of volcanic and ore-forming events at Kristineberg is poorly constrained, as the ages of the massive rhyolite and mine porphyry are unknown, and younging indicators are absent apart from local metal zoning in the A-ores. Regional structural trends, however, suggest that the sequence youngs to the south. The A- and B-ores are interpreted to have formed as synvolcanic sulphide sheets that were originally separated by some 100–150 m of volcanic rocks. The Einarsson zone, which is developed close to the 1,000 m level, is interpreted to have resulted in part from folding and dislocation of the B-ore sulphide sheet, and in part from remobilisation of sulphides into small Zn-rich massive sulphide lenses and late Au–Cu-rich veins. However, the abundance of strongly altered, andalusite-bearing rocks in the Einarsson zone, coupled with the occurrence of Au–Cu-rich disseminated sulphides in these rocks, suggests that some of the mineralisation was synvolcanic and formed from strongly acidic hydrothermal fluids. Editorial handling: P. Weihed  相似文献   
148.
The northern Norrbotten area in northern Sweden, is an important mining district and hosts several deposits of Fe-oxide Cu-Au-type. One of the best examples of spatially, and possibly genetically, related apatite–iron and copper–gold deposits in the region is at Tjårrojåkka, 50 km WSW of Kiruna. The deposits are hosted by strongly sheared and metamorphosed intermediate volcanic rocks and dolerites and show a structural control. The Tjårrojåkka iron deposit is a typical apatite–iron ore of Kiruna-type and the Tjårrojåkka copper occurrence shows the same characteristics as most other epigenetic deposits in Norrbotten. The host rock has been affected by strong albite and K-feldspar alteration related to mineralisation, resulting in an enrichment of Na, K, and Ba. Fe and V were depleted in the altered zones and added in mineralised samples. REE were enriched in the system, with the greatest addition related to mineralisation. Y was also mobile associated with albite alteration and copper mineralisation. The Tjårrojåkka iron and copper deposits show comparable hydrothermal alteration minerals and paragenesis, which might be a product of common host rock and similarities in ore fluid composition, or overprinting by successive alteration stages. Mineralogy and mineral chemistry of the alteration minerals (apatite, scapolite, feldspars, amphiboles, and biotite) indicate a higher salinity and Ba/K ratio in the fluid related to the alterations in the apatite–iron occurrence than in the copper deposit, where the minerals are enriched in F and S. The presence of hematite, barite, and in SO4 in scapolite suggests more oxidising-rich conditions during the emplacement of the Tjårrojåkka-Cu deposit. From existing data it might be suggested that one evolving system created the two occurrences, with the copper mineralisation representing a slightly later product.  相似文献   
149.
95 analyses of ore lead isotope ratios from 23 Phanerozoic ore deposits from the Swedish segment of the Fennoscandian Shield form a marked linear trend on a 207Pb/204Pb versus 206Pb/204Pb diagram. The line may be interpreted in a two-stage model, the lead being derived from 1.8±0.15 Ga old Svecokarelian basement and mineralization occurring at 0.4±0.15 Ga. The initial composition of the Svecokarelian rock lead was similar to the lead in early Proterozoic volcanogenic sulfide ores in Sweden. — The large spread in the isotope ratios was caused by a combination of selective leaching of different minerals in the source rocks, mixing with less radiogenic Caledonian lead, and local or regional variations in the U, Th and Pb contents of the basement. As a consequence, conventional methods of identifying source rocks from lead isotopic data (e.g. mu-values, Th/U ratios) may not be directly applicable. Phanerozoic ore lead development in the Swedish section of the Fennoscandian Shield was ensialic. That is, the ore lead was almost entirely derived from the Precambrian basement, although this basement does not appear to be anomalously enriched in Pb. No juvenile or mantle lead was apparently contributed to this section of the crust after the Precambrian, except for that mechanically transported onto the western edge of the Shield by the Caledonian nappes. However, some of Europe's largest lead deposits are included in these Swedish Phanerozoic mineralizations, suggesting that it was the nature of the processes involved rather than the richness of the source, that determined their formation.  相似文献   
150.
The Vulsinian lavas are dominated by a suite of undersaturated leucite-bearing basic to intermediate compositions. The remaining lavas are mainly oversaturated and have shoshonitic affinities. One hundred and thirty-five samples have been analysed for major elements and most for 20 trace elements. Twenty-seven lavas have been analysed for REE. They are all perpotassic (for the undersaturated lavas: K2O/Na2O=2–8) and have very high LIL element concentrations, (e.g. Rb=400–800 ppm, Th=25–150 ppm, REE/REEcho=c.200, (LREE/HREE)cho=c.20) even in the most basic rocks.The undersaturated lavas appear to be interrelated by fractional crystallization of cpx±olivine (from 14 to 11 wt.% CaO), cpx+leu±plg±mica (from 11 to 8 wt.% CaO), cpx+leu+plg+apa+magnetite±mica (from 8 to 5 wt.% CaO), and additional sanidine (or hyalophane)±haüyne (from 5 to 3 wt.% CaO). The saturated lavas and the few slightly undersaturated shoshonite basalts are thought to be evolved from the undersaturated magma(s) by crustal contamination or mixing with silica-rich magmas. The parental Vulsinian magma having: Mg-value=c.73, Cr=300–700 ppm, Ni=100–125 ppm, Sc= 40–50 ppm, Fo89–92, Di77–97 approximates a primary, mantle-derived liquid. Enrichment in LIL elements (incl. REE) and LREE/HREE suggest a small degree of partial melting from fertile mantle; whereas the low concentrations of Na, Ti and P suggest larger degrees of partial melting. This indicates that either the primary magma or the parental mantle was metasomatized by a fluid, which previously equilibrated with subducted continental material. This model agrees with published high 18O, high 87Sr/86Sr and low 143Nd/144Nd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号