首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9162篇
  免费   2001篇
  国内免费   2998篇
测绘学   1135篇
大气科学   1632篇
地球物理   2016篇
地质学   5518篇
海洋学   1689篇
天文学   305篇
综合类   876篇
自然地理   990篇
  2024年   74篇
  2023年   228篇
  2022年   523篇
  2021年   642篇
  2020年   575篇
  2019年   684篇
  2018年   615篇
  2017年   589篇
  2016年   587篇
  2015年   636篇
  2014年   666篇
  2013年   670篇
  2012年   780篇
  2011年   732篇
  2010年   692篇
  2009年   636篇
  2008年   654篇
  2007年   568篇
  2006年   515篇
  2005年   432篇
  2004年   340篇
  2003年   252篇
  2002年   221篇
  2001年   225篇
  2000年   215篇
  1999年   239篇
  1998年   192篇
  1997年   169篇
  1996年   168篇
  1995年   121篇
  1994年   87篇
  1993年   96篇
  1992年   77篇
  1991年   70篇
  1990年   43篇
  1989年   25篇
  1988年   31篇
  1987年   20篇
  1986年   13篇
  1985年   5篇
  1984年   9篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1979年   5篇
  1958年   4篇
  1957年   3篇
  1954年   7篇
  1933年   2篇
  1931年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
2.
ECOLOGICAL SERIES OF SOIL ANIMALS IN DARLIDAI MOUNTAIN   总被引:1,自引:0,他引:1  
The ecological series of soil animals under the broad-leaved and pine mixed forest in Darlidai Mountainwas studied. Seven sample plots were selected according to different altitude gradients, which belong to different vegeta-tion types. By investigating and analyzing soil animals in every sample plot it is found that there are 45 groups and 1956individuals, which axe involved in 3 phylums, 7 classes, 16 orders, respectively. The altitude is a key factor which af-fects ecological series of soil animals. Both the groups and individuals of soil animals increase with altitude increasingunder certain conditions, which contrastes with ordinary cases, resulting from special micro-climate in studied area. Thegroups and individuls of soil animals are the most under the broad-leaved and pine forest on the top of the mountain, andthe least under Picea-Abies forest in the foot of the mountain.  相似文献   
3.
应用GPS观测青藏高原东北缘应力场变化   总被引:2,自引:0,他引:2  
采用各向同性弹性地球模型推导了地面位移场速率与地壳内任意点应力场变化的边界积分关系,同时利用青藏高原东北缘1999~2001年观测的GPS资料对观测区地壳深度为5 km和25 km的主应力和最大剪应力进行了计算分析.结果表明,青藏高原东北缘的主应力变化主要集中在祁连山断裂、海原断裂等,在1920~1954年间历史上发生过多次震级为7.0~8.5级强震的断裂附近,并具有主应力变化沿断层走向分布、最大剪应力沿断层走向交替变化等特征.  相似文献   
4.
应用地壳波浪与镶嵌构造学说对富氏谱分析法提取地壳垂直形变信息的科学性做了地质学意义上的阐释 ,并提出了根据多期形变资料提取特定波段上构造策应力的数学模型  相似文献   
5.
The optical flash accompanying GRB 990123 is believed to be powered by the reverse shock of a thin shell. With the best-fit physical parameters for GRB 990123 and the assumption that the parameters in the optical flash are the same as in the afterglow, we show that: 1) the shell is thick rather than thin, and we have provided the light curve for the thick shell case which coincides with the observation; 2) the theoretical peak flux of the optical flash accounts for only 3×10~-4 of the observed. In order to remove this discrepancy, the physical parameters, the electron energy and magnetic ratios, εe and εB, should be 0.61 and 0.39, which are very different from their values for the late afterglow.  相似文献   
6.
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth. This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.  相似文献   
7.
提要 本文详细讨论了一种三维重力位场快速正反演方法。作者在前人工作的基础上,对算法作了行之有效的改进,通过对反演中的不稳定因素进行各种理论模型试算,得出保证迭代反演稳定收敛的准则,编制出可在微型机IBM—PC上运行的人机对话式自动正反演程序。本文还对各种不均质模型进行了模似计算并将该方法应用于某含油气沉积盆地的双层界面构造研究,揭示出了储油有利地段。  相似文献   
8.
It has become clear in recent years that relativistic beaming is a good explanation for the BL Lac phenomenon. Of studies based on the relativistic beaming model of BL Lac objects, we note that the orientation of jet's axis to the line-of-sight is very small and, therefore, the observed flux emitted from a rapidly moving source is orders of magnitude higher than the flux in its rest-frame:F obs = 3 + F intr, where is the bulk relativistic Doppler factor. Then the observed apparent magnitudem v must be corrected for this effect. For our 39 samples, the corrected apparent magnitudem v corr and logZ have a good correlation.  相似文献   
9.
A strain of thermophilic fungus Aspergillus fumigatus was cultured with K-bearing minerals to determine if microbe-mineral interactions enhance the release of mineralic potassium. Experiments were carried out in two settings, one with the mineral grains and the fungal cells in direct contact, and the other employing a membrane (pore size 0.22 μm) to separate the two. Measurements over a period of 30 days showed that, irrespective of the experimental setup, the concentration of free K in the culture was drastically higher than those in any of the control experiments where no living organism was present. Moreover, the occurrence of mineral-cell physical contact enhanced potassium release by an additional factor of 3 to 4 in comparison to the separation experiments. For contact experiments, Electron Probe Microanalysis revealed the formation of mycelium-mineral aggregates, and Atomic Force Microscopy imaging further indicated the possible ingestion of mineral particles by the fungus cells. Contrasting to what was observed and expected in control experiments, the potassium solubilization rate showed a positive dependence upon pH when fungi and minerals were mixed directly, and exhibited no correlations with solution acidity if cell-rock contact was restrained. These results appear to suggest that A. fumigatus promoted potassium release by means of at least three likely routes, one through the complexation of soluble organic ligands, another appealing to the immobile biopolymers such as the insoluble components of secretion, and the third related to the mechanical forces in association with the direct physical contact between cells and mineral particles.  相似文献   
10.
本文报道了在青藏高原东南木里地区发现的二叠纪苦橄岩和与其共生玄武岩的主微量元素地球化学特征以及Os-Sr-Nd同位素组成。苦橄岩和与其共生玄武岩受地壳混染作用影响较小。根据苦橄岩的Ti/Y比值和初始的Os同位素组成,将木里苦橄岩分为两类:高Ti/Y型苦橄岩和低Ti/Y型苦橄岩,其中高Ti/Y型苦橄岩具有高的γ_(Os)= 5.3~ 10.7和ε_(Nd)= 5.9~ 6.4,与全球典型洋岛玄武岩的Os和Nd同位素组成接近,代表了地幔柱源区的同位素特征;而低Ti/Y型苦橄岩具有低的γ_(Os)=-4.1~ 1.2和ε_(Nd)= 3.2~ 5.0,可能表明受到了SCLM(大陆岩石圈地幔)源区物质的混染。与其共生的玄武岩具有低的γ_(Os)=-3.5~-1.6和ε_(Nd)=-0.6~ 0.7,表明其来自于不同于低Ti/Y型苦橄岩也有异于高Ti/Y型苦橄岩的地幔源区,但是也可能受到了SCLM物质的混染。基于Nd-Os同位素的地幔柱与SCLM的二端元混合模型显示:低Ti/Y型苦橄岩可能是SCLM物质组分与地幔柱起源的苦橄质原始岩浆混合形成的;与苦橄岩共生的玄武岩可能是由地幔柱来源的玄武质岩浆与SCLM小比例熔融的熔体混合形成的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号