首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3176篇
  免费   103篇
  国内免费   20篇
测绘学   114篇
大气科学   357篇
地球物理   657篇
地质学   970篇
海洋学   341篇
天文学   606篇
综合类   4篇
自然地理   250篇
  2023年   10篇
  2022年   12篇
  2021年   34篇
  2020年   45篇
  2019年   46篇
  2018年   91篇
  2017年   67篇
  2016年   118篇
  2015年   67篇
  2014年   101篇
  2013年   151篇
  2012年   145篇
  2011年   174篇
  2010年   147篇
  2009年   203篇
  2008年   195篇
  2007年   163篇
  2006年   139篇
  2005年   119篇
  2004年   125篇
  2003年   117篇
  2002年   103篇
  2001年   80篇
  2000年   87篇
  1999年   73篇
  1998年   88篇
  1997年   54篇
  1996年   50篇
  1995年   33篇
  1994年   29篇
  1993年   36篇
  1992年   24篇
  1991年   37篇
  1990年   14篇
  1989年   19篇
  1988年   10篇
  1987年   22篇
  1986年   11篇
  1985年   22篇
  1984年   27篇
  1983年   22篇
  1982年   16篇
  1981年   10篇
  1980年   14篇
  1979年   11篇
  1978年   9篇
  1977年   11篇
  1976年   14篇
  1975年   13篇
  1973年   9篇
排序方式: 共有3299条查询结果,搜索用时 15 毫秒
151.
Crustal deformation in front of an indenter is often affected by the indenter’s geometry, rheology, and motion path. In this context, the kinematics of the Jaufen- and Passeier faults have been studied by carrying out paleostress analysis in combination with crustal-scale analogue modelling to infer (1) their relationship during indentation of the Adriatic plate and (2) their sensitivity in terms of fault kinematics to the geometry and motion path of Adria. The field study reveals mylonites along the Jaufen fault, which formed under lower greenschist facies conditions and is associated with top-to-the-west/northwest shear with a northern block down component. In addition, a brittle reactivation of the Jaufen shear zone under NNW–SSE to NW–SE compressional and ENE–WSW tensional stress conditions was deduced from paleostress analysis. The inferred shortening direction is consistent with fission track ages portraying Neogene exhumation of the Meran-Mauls basement south of the fault. Along the Passeier fault, deformation was only brittle to semi-ductile and paleostress tensors record that the fault was subjected to E–W extension along its northern segment varying into NW–SE compression and sinistral transpression along its southern segment. In the performed analogue experiments, a rigid, triangular shaped indenter was pushed into a sand pile resulting in the formation of a Passeier-like fault sprouting from the indenter’s tip. These kinds of north-trending tip faults formed in all experiments with shortening directions towards the NW, N, or NE. Consequently, we argue that the formation of the Passeier fault strongly corresponds to the outline of the Adriatic indenter and was only little affected by the indenter’s motion path due to induced strain partitioning in front of the different indenter segments. The associated fault kinematics along the Passeier fault including both E–W extension and NNW to NW shortening, however, is most consistent with a northward advancing Adriatic indenter.  相似文献   
152.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
153.
154.
The objective of analyzing hazard and risk in an area is to utilize the result in selecting appropriate landslide risk reduction strategies. However, this does not happen always, and most often results of the hazard and risk analysis remain at an academic level. The under or non-utilization of results in pre-disaster planning could be due to several reasons, including difficulties in understanding the scientific content/meaning of the models, and lack of information on the practical significance and utility of the models. In this study, an attempt is made to highlight the uses of hazard and risk information in different landslide risk reduction strategies along a transportation corridor in Nilgiri, India. At first, a quantitative analysis of landslide hazard and risk was made. The obtained information was then incorporated in risk reduction options such as land use zoning, engineering solutions, and emergency preparedness. For emergency preparedness, the perception of the local Nilgiri communities toward landslide risk was evaluated and simplified maps were generated for the benefit and understanding of end users. A rainfall threshold-based early warning system was presented, which could be used in risk awareness programs involving public participation. The use of quantitative risk information in the cost-benefit analysis for the planning of structural measures to protect the road and railway alignments was also highlighted, and examples were shown how the transport organizations could implement these measures. Finally, the study provided examples of the utility of hazard and risk information for spatial planning and zoning, indicating areas where the landslide hazard is too high for planning future developments.  相似文献   
155.
The anodic and cathodic behaviour of pyrite with clay and different carbon coatings of activated carbon, graphite and carbonaceous matter in cyanide medium was investigated using the potentiodynamic method. The presence of clay coating did not change the polarisation curve appearance for either the anodic oxidation of pyrite or the cathodic reduction of oxygen or the potential of the current plateau, but only decreased the plateau current especially at a higher coating thickness. The presence of the carbon coatings marginally shifted the rest potential for pyrite to a more anodic position and slightly changed the polarisation curve appearance for pyrite oxidation. The current density for pyrite oxidation largely increased in the presence of the carbon coatings, the potential at the plateau shifted to more cathodic positions, and the plateau width became smaller. These effects became more noticeable at a higher coating thickness. The activated carbon, graphite and carbonaceous matter coatings performed similarly in affecting pyrite oxidation at a similar thickness. The carbon coatings significantly increased the limiting current densities for oxygen reduction on pyrite, and the limiting current plateau became steeper at a higher coating thickness. The carbon coatings increased the limiting current density for oxygen reduction to a similar extent at a low coating thickness, but increased to varied extents at a higher coating thickness. The carbon coatings also greatly increased the cathodic current density for gold reduction on pyrite. The enhancement of pyrite oxidation and oxygen or gold reduction on pyrite by the carbon coatings was likely attributed to the electrochemical interaction between pyrite and the carbon materials with electron-rich surfaces and high conductivity. The presence of the carbon coatings significantly increased the oxidation of pyrite in aerated cyanide solutions and the preg-robbing of pyrite especially at a higher coating thickness.  相似文献   
156.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   
157.
Electron paramagnetic resonance (EPR) spectroscopy of hot HNO3 insoluble residues of rock powders is used as a new exploration technique for the volcanic-hosted massive sulphide (VHMS) deposit in the Rosebery mine area. The EPR signal intensities measured in 326.5±5 mT sweeps are strong in the altered rocks, and show a negative correlation with Ca, Na and Sr, and a positive correlation with K/Na, Rb/Sr and (K × Rb)/(Ca × Na × Sr). The EPR intensities measured in 326.5±100 mT sweeps show high values in the footwall pyroclastics, host rocks and hanging wall pyroclastics near and around the Rosebery deposit, and correlate positively with K, Fe, Mn, Ba, F, Rb, Zn, Pb and Zr. The Rosebery deposit and associated footwall alteration zone are located at the intersection of two elongated paramagnetic halos. The first is characterized by strong intensities of [AlO4]° signals measured at magnetic flux density sweeps over 326.5±5 mT, trends NE–SW, and passes discordantly from the west to the east the White Spur Formation, altered footwall (footwall alteration zone), host rock of the Rosebery deposit, hanging wall and Mount Black Volcanics. The second, largely stratabound, halo is defined by strong intensities of Mn2+ sextets observed at magnetic flux density sweeps over 326.5±100 mT, runs N–S following the stratigraphic trend, and outlines the mineralized host rock and footwall alteration zone. It also extends toward the south into the unaltered footwall and hanging wall rocks. The first type of halo is considered to be related to wall rock alteration due to the VHMS mineralization processes as well to later Devonian metamorphism, and the second is thought to be related to massive sulphide mineralization alone.  相似文献   
158.
Hematite, as a typical iron oxide slime in sulphide ore slurries, was artificially added into the leaching systems of pure gold and a sulphide ore respectively, in an attempt to investigate the effect of iron oxide slimes on the ammoniacal thiosulphate leaching of gold. The presence of hematite significantly reduced the dissolution of gold and this detrimental effect became more pronounced with increasing hematite concentration. Hematite formed coatings on gold surfaces, which could prevent leach solution from diffusing to the gold surfaces and hence, inhibit gold dissolution. Hematite catalysed the oxidative decomposition of thiosulphate to polythionates with oxygen present. XPS studies indicated a thin layer of iron oxide coating as well as the deposition of some copper and sulphur species on gold surfaces. SEM images revealed a lesser extent of corrosion for gold after leaching in the presence of hematite. The gold extraction from the sulphide ore was reduced with the addition of hematite and this effect became more noticeable with an addition of hematite at a higher concentration. A natural guar type surfactant (Gempolym M47) reduced the detrimental effect of hematite on gold extraction likely due to the prevention of hematite coating on gold and mineral particles and the dispersion of the mineral slurry. Gempolym M47 stabilised thiosulphate by weakening the interaction between cupric ions and thiosulphate and by minimising the catalytic effect of hematite on thiosulphate decomposition.  相似文献   
159.
The structure of the mid-Norwegian volcanic Vøring margin at the onset of the Maastrichtian–Paleocene extension phase reflects the cumulative effect of earlier consecutive rifting events. Lateral structural differences present on the margin at that time are a consequence of migration of the location of maximum extension in time between Norway and Greenland. The most important imprints (Moho depth, thermal structure) of these events on the lithosphere are incorporated in a numerical simulation of the final extension phase. We focus on a possible mechanism of formation of the Vøring Marginal High and address the relationship between spatial and temporal evolution of crustal thinning and thickening, uplift of the surface and strength of the lithosphere.It is found that the Vøring Basin formed the strongest part of the margin which explains why the Maastrichtian–Paleocene rift axis was not located here but instead jumped westward with respect to the earlier rift axes locations. The modeling study predicts that local crustal thickening during extension can be expected when large lateral thermal variations are present in the lithosphere at the onset of extension. Negative buoyancy induced by lateral temperature differences increases downwelling adjacent to the rifting zone; convergence of material at the particular part of the margin is mainly taken up by the lower crust. The model shows that during the final phase of extension, the crust in the Vøring Marginal High area was thickened and the surface uplifted. It is likely that this dynamic process and the effects of magmatic intrusions both acted in concert to form the Marginal High.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号