首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4347篇
  免费   67篇
  国内免费   63篇
测绘学   59篇
大气科学   365篇
地球物理   774篇
地质学   2152篇
海洋学   370篇
天文学   551篇
综合类   66篇
自然地理   140篇
  2024年   3篇
  2023年   16篇
  2022年   51篇
  2021年   78篇
  2020年   96篇
  2019年   110篇
  2018年   243篇
  2017年   251篇
  2016年   276篇
  2015年   130篇
  2014年   266篇
  2013年   356篇
  2012年   351篇
  2011年   341篇
  2010年   344篇
  2009年   292篇
  2008年   274篇
  2007年   284篇
  2006年   226篇
  2005年   125篇
  2004年   55篇
  2003年   40篇
  2002年   46篇
  2001年   32篇
  2000年   38篇
  1999年   16篇
  1998年   13篇
  1997年   25篇
  1996年   12篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   6篇
  1982年   6篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1968年   3篇
  1958年   3篇
排序方式: 共有4477条查询结果,搜索用时 15 毫秒
991.
New geochemical data are discussed on the magmatic complexes of the Koksharovka alkaline ultrabasic massif of Late Jurassic age obtained by the ICP-MS method. Based on the first results on rare earth geochemistry of carbonatites and associating pyroxenites and geological observations, the magmatic origin of the Koksharovka carbonatites was substantiated, and the problems of formation of accompanying igneous rocks were considered.  相似文献   
992.
The comparative-geochemical study was first conducted for the ultrabasic-basic massifs of the central part of the Belomorian mobile belt, which were previously ascribed to the drusite complex on the basis of the presence of coronal textures. The studied magmatic bodies are geochemically heterogeneous and can be subdivided into three groups: (1) high-Mg rocks (MgO > 20 wt %) with elevated Cr content, enriched trace element patterns, and deep negative Ta-Nb anomaly (Sorkajoki Massif). Intrusions of this group are geochemically close to the layered plutons of Northern and Eastern Karelia (Kivakka, Burakovsky) and to the intrusions of the Kola Peninsula (Monchepluton and others); (2) low-Mg intrusions (MgO < 10 wt %) with elevated contents of Fe, Ti, and P (403-m Height Massif). The rocks composing these intrusions are characterized by subhorizontal trace element patterns and weak Ta-Nb anomaly; (3) intrusions with intermediate MgO contents (10–20 wt %), flat, occasionally depleted REE patterns, and lack of Ta-Nb anomaly (Mt. Grob Tundra). The identified geochemical differences do not depend on the degree of metamorphic transformations, but were presumably caused by differences in phase and chemical composition of parental magmas, as well as by conditions of their crystallization. It was substantiated that ultrabasic-basic massifs presently united into the drusite complex are genetically diverse and acquired similar textural appearance due to regional metamorphism. Thus, the presence of coronal textures is insufficient to ascribe the intrusions to the drusite complex, their mineralogical and geochemical composition should be taken into account.  相似文献   
993.
The detailed mineralogical and structural-crystal-chemical characteristics are reported for the first time for glauconite grains extracted from the fine-platy silty-sandy dolomites at the roof of the lower subformation of the Yusmastakh Formation (Riphean, Anabar Uplift, North Siberia). Based on the complex study (X-ray diffraction, classical chemical analysis, microprobe analysis, IR-spectroscopy, thermogravimetric analysis, scanning electron microscopy with microprobe analysis, and Mössbauer spectroscopy), it was demonstrated that the studied glauconite sample is characterized by unique chemical and structural heterogeneity.The mineral structure consists of micaceous (90%), smectite (6%), and di-trioctahedral chlorite (4%) layers. Mica is classed with Al-glauconite (Al > Fe3+) with elevated Mg content. The elevated Mg mole fraction of the mineral is caused by the presence of Mg-bearing brucite-type interlayers of di-trioctahedral chlorite and the high Mg content in the octahedral sheets of 2: 1 layers. It was first discovered that glauconites are characterized by the heterogeneous distribution of cations over the available trans- and cis-octahedra due to the coexistence of trans- and cis-vacant octahedra and small trioctahedral clusters in octahedral sheets. The distribution of isomorphic cations over the accessible octahedral sites is also heterogeneous due to the tendency of Fe, Mg and Al, Mg cations to segregation and formation of corresponding domains.It was found that structure of the studied glauconite has a specific stacking defect: in addition to the predominant subsequent layers of similar azimuthal orientation according to 1M type (~77%), some layer fragments are rotated at 180° (~15%) and ±120° (8%). The structural-crystal-chemical heterogeneity of the mineral is explained by the fact that its microcrystals grew in the dolomitic sediment under nonequilibrium conditions of the reduction zone of a shallow-water basin with a sufficiently high content of Mg cations, which significantly contributed to the glauconite formation.  相似文献   
994.
The paper presents results of the detailed study of phosphorites from manganiferous beds of the Chiatura deposit. The relatively high-grade (P2O5 20–28%) phosphorites are represented by various rocks ranging from the variety dominated by massive phosphates with a rare aleuritic admixture of quartz and feldspar grains to rocks mainly composed of terrigenous material with phosphates in the matrix. Phosphates make up the matrix of various organic remains: differently preserved diatom algae and microbial species. Some relatively large organic remains (in particular, sponge spicules) are typically composed of iron minerals (with manganese admixture) rather than phosphates. Manganese ores comprise phosphorite fragments composed of phosphatized cyanobacterial mat. Phosphorites of the Chiatura deposit were likely formed in a shallow-water zone away from the continental land.  相似文献   
995.
Fine-grained clayey subfractions (SF) with particle sizes of 1–2, 0.6–1.0, 0.3–0.6, 0.2–0.3, 0.1–0.2, and <0.1 μm were extracted from shales of the Vendian Staraya Rechka Formation in the Anabar Massif and studied by XRD and Rb-Sr methods. All the clayey subfractions are represented by illite with high crystallinity indices, which are characteristic of the low-temperature diagenesis/catagenesis zone and grow with the decrease of the particle size. The Rb-Sr systematics in clayey subfractions combined with mineralogical data provide grounds for the conclusion that illite from clayey rocks of the Staraya Rechka Formation was forming during two periods: approximately 560 and 391–413 Ma ago. The first illite generation was likely formed in the course of lithostatic subsidence of the Staraya Rechka sediments and the second one, during the Devonian lithogenesis stage. It is assumed that age of the first generation (∼560 Ma) is close to that of the Staraya Rechka Formation. This inference is consistent with biostratigraphic, chemostratigraphic, and geochronological data obtained for both rocks of the Anabar Massif and Vendian sediments from other regions of Siberia.  相似文献   
996.
This paper is devoted to detailed study of picritic rocks (olivine melanogabbronorites) and comagmatic gabbrodolerites from sills and dikes in the central part of the Bashkirian meganticlinorium. These rocks are ascribed to the Kama-Belsk magmatic province (KBP) that was formed in the eastern East European Platform (EEP) in the Mesoproterozoic time. The study of minerals (EMPA, SIMS), rocks, and their oxygen isotope compositions showed the contribution of crustal contamination, fractional crystallization and cumulus processes in their formation. The geochemical indicators of crustal contamination (Nb/Nb*, (Nb/La) n , δ18O, and others) show strong variations, which indicates uneven crustal contribution in the parental melts during rock formation (10–25%). The study of weakly contaminated (δ18O = 5.3‰) olivine melanogabbronorites (MgO = 22.55 wt %) from the small Ishlya-1 subvolcanic body, which contain subordinate amount of cumulus (24%), high-magnesian olivine (Fo91.3), and high-Cr spinel (cr# 0.67), as well as HREE depleted clinopyroxenes, allowed us to retrieve the composition of parental melt. The latter contained about 20 wt % MgO and was formed by 19–26% melting of mantle source (potential mantle temperature T m of 1530–1545°C). Geochemical characteristics of KBP reflect the formation of primary melts by melting of mantle column at different depths, mixing of the melts, and significant contamination by crustal material. The dominant role in the formation of the rocks of the Ishlya area and Mashak Complex was played by derivatives of spinel peridotites, while the rocks of the Bakal-Satka area were derived from garnet peridotites.  相似文献   
997.
The Red Sea Rift has been an object of comprehensive studies by several generations of geologists and geophysicists. Many publications and open-file reports provide insights into the geological history of this rift. Paleogene and Cretaceous rocks, which are considered to be prerift, are locally exposed at the margins of the Red Sea Rift. At the same time, some evidence indicates that at least some of these rocks are related to the early stage of the evolution of the Red Sea Rift. The available geological data suggest that the Red Sea region started its active evolution in the Cretaceous. As follows from lithostratigraphic data, the Cretaceous-Paleogene trough that predated the Oligocene-Quaternary rift covered this region completely or partially. The pre-Oligocene magmatism and geological evidence show that the Cretaceous-Paleogene trough was of the rift type. The Cretaceous-Eocene and Oligocene-Quaternary phases of rifting were separated by an epoch of uplifting and denudation documented by the erosion surface and unconformity.  相似文献   
998.
Local U-Pb dating of zircons separated from various rocks in the crest zone of the Mid-Atlantic Ridge (MAR) and Carter Seamount (Sierra Leone Rise) is performed. Younger zircons formed in situ in combination with older xenogenic zircons are revealed in enriched basalts, alkaline volcanic rocks, gabbroic rocks, and plagiogranites. Only older zircons are found in depleted basalts and peridotites. Older zircons are ubiquitous in the young oceanic lithosphere of the Central Atlantic. The age of the younger zircons from the crest zone of the MAR ranges from 0.38 to 11.26 Ma and progressively increases receding from the axial zone of the ridge. This fact provides additional evidence for spreading of the oceanic floor. The rate of half-spreading calculated from the age of the studied zircons is close to the rate of half-spreading estimated from magnetic anomalies. The age of the younger zircons from Carter Seamount (58 Ma) corresponds to the age of the volcanic edifice. Older zircons make up an age series from 53 to 3200 Ma. Clusters of zircons differing in age reveal quasiperiodicity of about 200 Ma, which approximately corresponds to the global tectonic epochs in the geological evolution of the Earth. Several age groups of older zircons combine grains close in morphology and geochemistry: (1) Neoproterozoic and Phanerozoic (53–700 Ma) prismatic grains with slightly resorbed faces, well-preserved or translucent oscillatory zoning, and geochemical features inherent to magmatic zircons; (2) prismatic grains dated at 1811 Ma with resorbed faces and edges, fragmentary or translucent zoning, and geochemical features inherent to magmatic zircons; (3) ovoid and highly resorbed prismatic grains with chaotic internal structure and metamorphic geochemical parameters; the peak of their ages is 1880 Ma. The performed study indicates that older xenogenic zircons from young rocks in the crest zone of the MAR were captured by melt or incorporated into refractory restite probably in the sublithospheric mantle at the level of magma generation in the asthenosphere. It is suggested that zircons could have crystallized from the melts repeatedly migrating through the asthenosphere during geological history or were entrapped by the asthenosphere together with blocks of disintegrated and delaminated continental lithosphere in the process of breakup of the continents older than Gondwana. The variability in the age of older zircons even within individual samples may be regarded as evidence for active stirring of matter as a result of periodically arising and destroyed within-asthenospheric convective flows varying in orientation and scale.  相似文献   
999.
One of the main particular features of the structure of the Kuiper Belt is that it contains clusters of objects of small orbital eccentricity and inclination (“cold population”). In order to solve the problem of the origin of the objects, we considered the process of the gravitational interaction of a comparatively small-mass planet with a planetesimal disk. We found that one particular property of the process is that the planet changes its direction of migration. The interaction with the planet results in the transportation of a considerable portion of planetesimals from the inner zone out to the Kuiper Belt. After such a transition of the objects, the planet returns to the inner regions of the planetesimal disk. Numerical simulations show that the reversible migration of a planet of a mass similar to that of the Earth can explain the main properties of the Kuiper Belt’s cold population orbit distribution.  相似文献   
1000.
An experience of radioheliographic prediction of powerful solar flares using active region microwave emission intensity and circular polarization distribution is briefly described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号