首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2005篇
  免费   115篇
  国内免费   89篇
测绘学   98篇
大气科学   115篇
地球物理   507篇
地质学   1047篇
海洋学   99篇
天文学   157篇
综合类   36篇
自然地理   150篇
  2024年   5篇
  2023年   15篇
  2022年   70篇
  2021年   76篇
  2020年   77篇
  2019年   89篇
  2018年   167篇
  2017年   145篇
  2016年   197篇
  2015年   94篇
  2014年   208篇
  2013年   203篇
  2012年   107篇
  2011年   124篇
  2010年   69篇
  2009年   87篇
  2008年   68篇
  2007年   47篇
  2006年   63篇
  2005年   31篇
  2004年   28篇
  2003年   28篇
  2002年   27篇
  2001年   27篇
  2000年   16篇
  1999年   9篇
  1998年   14篇
  1997年   8篇
  1996年   3篇
  1995年   9篇
  1994年   9篇
  1993年   8篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1978年   3篇
  1975年   4篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有2209条查询结果,搜索用时 16 毫秒
941.
利用2018年10月8日至2019年1月31日塔克拉玛干沙漠腹地起伏地形上高大沙垄高点和低点的温度、相对湿度、风速和大气压同步观测资料,对比分析沙漠起伏地形上秋冬季的微气象特征。结果表明:塔克拉玛干沙漠腹地高大沙垄造成的地形起伏,使得沙垄高点和沙垄低点气温、比湿和风速日变化差异明显。沙垄高点和沙垄低点气温差异主要体现在夜间,与沙漠腹地夜间存在逆温现象有关,表现出沙垄高点气温明显高于沙垄低点,观测期气温差异平均值为6.6 ℃。沙垄低点气温日较差高于沙垄高点。2018年10、11、12月,气温随高度变化出现逆温现象与沙垄高点气温高于沙垄低点气温在时间上相互对应。两个站点比湿较小,平均比湿分别为0.68 g·kg-1和0.99 g·kg-1。比湿日变化趋势随季节发生显著变化,主要与大气稳定度增加、冬季水汽增多及夜间逆湿现象逐渐显著相关。地形位置较高的沙垄高点风速比沙垄低点大,风速差异主要体现在夜间。2018年11月2、14、15、20日和2019年1月30日,沙垄高点风速维持在1.9~4.6 m·s-1,平均3.2 m·s-1,沙垄低点风速维持在0.8~4\^5 m·s-1,平均2.5 m·s-1。  相似文献   
942.
作为世界第二大流动性沙漠,塔克拉玛干沙漠独特的陆表水热交换过程直接影响中国乃至全球的大气环流运动。将静止气象卫星FY-2F地表温度产品、极地轨道卫星MODIS陆表产品与中国区域高时空分辨率地面气象要素驱动数据集(CMFD)结合,反演得到时间分辨率为3 h、空间辨率为0.1°的2017年塔克拉玛干沙漠地表净辐射,利用塔中气象站观测值验证反演结果,并分析地表净辐射的时空变化特征。结果表明:(1)利用卫星遥感与再分析资料获取的地表特征参数与实测值误差较小,决定系数R2均在0.8以上。(2)地表净辐射模拟值与地面实测值具有较好的一致性,决定系数R2为0.967,均方根误差RMSE为29.193 W·m-2。(3)地表净辐射日变化呈现明显的单峰型特征:早晚值较低,正午值最高,并且夜间值基本为负且变化幅度不大。(4)地表净辐射夏季>春季>秋季>冬季。(5)沙漠边缘散布的绿洲和农田地区净辐射值最高,沙漠腹地次之,沙漠南缘的昆仑山和阿尔金山冰川覆盖地区净辐射值最低。  相似文献   
943.
利用塔克拉玛干沙漠腹地塔中和巴丹吉林沙漠北缘拐子湖两个陆气通量监测站2013年2月-2014年1月地面辐射观测数据及相应气象资料,对比分析塔中和拐子湖两地的太阳辐射通量和地表反照率差异特征,同时也探究了两地太阳辐射通量和地表反照率与太阳高度角之间的关系。结果表明:(1)塔中和拐子湖两地各辐射通量均呈较为同步的季节变化特征;具有太阳辐射优势的塔中地区因沙尘天气的影响在部分月份地表总辐射小于拐子湖地区;拐子湖由于地表沙粒相对较粗且包含大量透明度较高的石英颗粒,地表反照率和反射辐射均大于塔中地区;两地各辐射通量月平均日变化均呈现出标准倒"U"型结构;(2)拐子湖较粗的地表沙粒导致沙尘天气过后不易形成浮尘,沙尘天气过后各辐射通量恢复至发生之前的状态较塔中地区迅速;(3)两地太阳高度角夏季最大,冬季最小,最大值均可达75°左右,最小值塔中和拐子湖地区分别为45°和40°;各辐射通量随着太阳高度角的升高而增加,地表反照率随之减小,但受多种因素影响各辐射通量最大值并未出现在太阳高度角最大的时候。  相似文献   
944.
The volumes and expansivities of four hydrous phonolite glasses and liquids have been measured by dilatometry from 300 K up to the glass transition and over a 50 K interval just above the glass transition. The partial molar volume of water is independent of the water content for the glass and liquid phases, with values of about 11.0ǂ.5 and 17.1ǂ.9 cm3/mol at 300 and 800 K, respectively. The partial molar thermal expansivity of water in phonolite glasses is about 8᎒-5 K-1, a result similar to recently published values for different silicate compositions, and about 36.5᎒-5 K-1 in phonolite liquids. The implications for melt density and water dissolution are discussed.  相似文献   
945.
This paper presents results of a site-specific probabilistic seismic hazard analysis for northern part of the Qeshm Island, one the most seismic prone areas of Iran. Seismotectonic and seismicity properties of seismic sources in the study area were characterized and used for evaluation of various strong ground motion parameters implementing the classical Cornell’s PSHA approach. The results show that peak rock accelerations for 475-year return period are 0.4 and 0.27 g, respectively, for 84th and 50th percentiles while being about 0.37 and 0.61 g for 2475-year return period. These values are slightly smaller than those read from national seismic zonation maps which can be attributed to the considered conservatism for development of such design maps. In order to incorporate local site conditions, a series of dynamic site response analyses based on the equivalent linear approach were also employed. The results indicate that the presence of soft subsurface deposits at the site significantly alters the fundamental characteristics of the response spectra. The obtained median (50th percentile) peak ground accelerations for 975-year return period range between 0.49 and 0.54 g at different locations in the study site showing minor amplifications relative to their corresponding bedrock acceleration of 0.48 g. Finally, the obtained site-specific spectrum was compared with the standard spectrum mandated by the design codes. In this regard, the agreement was found to be reasonable at period ranges shorter than about 0.5 s, while the differences were more obvious at longer periods. This reveals the need for implementation of site-specific design spectrum to avoid underestimation or overestimation of seismic forces for designing critically important structures especially when softer deposits are encountered.  相似文献   
946.
Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai??i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at M??kaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2?h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather data generation and disaggregation methods were concentrated in a few Hawaiian watersheds, the results presented can be used to similar mountainous location settings, as well as any specific locations aimed at furthering the site-specific performance evaluation of these tested models.  相似文献   
947.
The concept of equivalent linearization, in which the actual nonlinear structure is replaced by an equivalent linear single-degree-of-freedom (SDOF) system, is extended for soil-structure systems in order to consider the simultaneous effects of soil-structure interaction (SSI) and inelastic behavior of the structure on equivalent linear parameters (ELP). This is carried out by searching over a two-dimensional equivalent period–equivalent damping space for the best pair, which can predict the earthquake response of the inelastic soil-structure system with sufficient accuracy. The super-structure is modeled as an elasto-plastic SDOF system whereas the soil beneath the structure is considered as a homogeneous half-space and is replaced by a discrete model. An extensive parametric study is carried out for a wide range of soil-structure systems subjected to a suite of 59 ground motions. The effect of SSI on ELP is studied through introducing a set of non-dimensional key parameters, which define the soil-structure system. It is shown that ELP of soil-structure systems result from a trade-off between SSI effect and nonlinear behavior of the structure. The contribution of each of these two factors depends on the characteristics of the soil-structure system which, in turn, are defined by the introduced non-dimensional key parameters. Moreover, the reliability of the predicted response of soil-structure systems and its sensitivity to deviation from optimal ELP is studied in detail, which sheds light on the consequences of using improper pairs of ELP for interacting systems in the framework of performance-based design of structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
948.
A detailed study comparing two – dry and wet – numerical approaches to model filtration processes at stake in actual granular filters is presented using the discrete element method (DEM). In the first approach, the migration of fines is provided by gravitational forces, while in the second, hydrodynamic forces induce their movement. Numerical filtration tests were performed on granular filters involving materials with different gradings and porosities. The study demonstrated that the wet filtration approach generates higher tortuosity due to the possibility for fines to deviate from direct paths towards more open sideways. It leads to a lower coefficient of retention for the filter than if it were characterised using a dry filtration approach. However, the intensity of this feature greatly depends on the grading and the porosity of the granular filter. Finally, an enhanced dry filtration model designated as the “equivalent cyclic wet filtration model” is presented, which better mimics the results obtained through the preferable wet filtration model compared to the original dry filtration model. This new model constitutes a valuable alternative tool for studies of filtration properties in granular materials.  相似文献   
949.
950.
Reservoir behavior due to injection and circulation of cold fluid is studied with a shear displacement model based on the distributed dislocation technique, in a poro‐thermoelastic environment. The approach is applied to a selected volume of Soultz geothermal reservoir at a depth range of 3600 to 3700 m. Permeability enhancement and geothermal potential of Soultz geothermal reservoir are assessed over a stimulation period of 3 months and a fluid circulation period of 14 years. This study—by shedding light onto another source of uncertainty—points toward a special role for the fracture surface asperities in predicting the shear dilation of fractures. It was also observed that thermal stress has a significant impact on changing the reservoir stress field. The effect of thermal stresses on reservoir behavior is more evident over longer circulation term as the rock matrix temperature is significantly lowered. Change in the fracture permeability due to the thermal stresses can also lead to the short circuiting between the injection and production wells which in turn decreases the produced fluid temperature significantly. The effect of thermal stress persists during the whole circulation period as it has significant impact on the continuous increase in the flow rate due to improved permeability over the circulation period. In the current study, taking into account the thermal stress resulted in a decrease of about 7 °C in predicted produced fluid temperature after 14 years of cold fluid circulation; a difference which notably influences the potential prediction of an enhanced geothermal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号