Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.
Fifty-two samples of Miocene pelitic sedimentary rock from outcrops on Medvednica,Moslavacka Gora and Psunj Mts.,and boreholes in the Sava Depression and the Pozega Sub-depression were investigated.These sediments formed in different marine(with normal and reduced salinity),brackish,and freshwater environments,depending on the development stage of the Pannonian Basin System.Carbonate minerals,clay minerals and quartz are the main constituents of all pelitic sedimentary rocks,except in those from Moslavacka Gora Mt in which carbonate minerals are not present.Feldspars,pyrite,opal-CT,and hematite are present as minor constituents in some rocks.Besides calcite,dependent on the sedimentary environment and diagenetic changes,high-magnesium calcite,aragonite,dolomite and ankerite/Cadolomite are also present.Smectite or illite-smectite is the main clay minerals in the samples.Minor constituents,present in almost all samples,are detrital illite and kaolinite.In some samples chlorite is also present in a low amount.Major elements,trace elements and rare earth elements patterns used in provenance analysis show that all analysed samples have a composition similar to the values of the upper continental crust(UCC).The contents of major and trace elements as well as SiO_2/Al_2O_3,K_2O/Al_2O_3,Na_2O/K_2O,Eu/Eu~*,La/Sc,Th/Sc,La/Co Th/Co,Th/Cr,Ce/Ce~* and LREE/HREE ratios,show that the analysed pelitic sedimentary rocks were formed by weathering of different types of mostly acidic(silicic),i.e.felsic rocks. 相似文献
The Croatian south part of the country is mainly composed of strongly krastified carbonate rocks. Also in this south part of Croatia is lacking of large depressions and poljes with thick covers. Some karst poljes and depressions may have thick covers, like for example the Vransko polje. The Vransko polje is characterised by an intensive agricultural activity. At the centre of the polje is located a karst spring (Turanjsko jezero), which is used for the water supply of the town Biograd and its surroundings. Total metals, nutrients (nitrate, ammonia, phosphate), organic matter content and cation exchange capacity (CEC) were measured in soil samples collected from the polje. Metals and nutrients were also measured in the water samples of channel Kotarka (which is passing through the area) and three springs (Turanjsko jezero, Kakma and Tinj). Measured total concentrations of metals of soil samples were treated by R-cluster multivariate statistical analysis. The result of statistical analysis showed grouping of metals with similar behaviour. Content of metals and nutrients were low in the spring samples but high in the water sample of the channel Kotarka, because the channel drains the water from the surroundings. Although agricultural activity in the Vransko polje is high, there is no high anthropogenic influence on groundwater and soil. They are both of good quality. 相似文献
Geological relationships, hydrogeology and chemical composition of ground water in northern Banat were studied through the
period 2000–2004 using the available background data from published and unpublished sources. Northern Banat is the extreme
northeastern part of the Republic of Serbia and a geotectonic part of the vast Pannonian depression. The source of domestic
and industrial water supply is only groundwater from artesian and subartesian aquifers of Lower Pleistocene (Q11) and Upper Pleistocene (Pl32) sand deposits. The ground water, “peculiar” in chemical composition, is the only source of drinking water in the arid area.
A notable variation in the chemical composition of artesian waters within the same geotectonic unit (Pannonian basin), abstracted
for municipal water supplies of Kikinda, Novi Knezevac and Djala, has attracted attention of these authors. Our paper attempts
to interpret the variation in the chemical composition of ground water and the cause of the variation by the interaction of
ground water and rocks forming the aquifers on the case example of the water supply sources for the three mentioned towns.
With respect to the depth and lithology of the aquifers, we interpret the varied chemical compositions of waters in the mentioned
sources as a consequence of natural factors (geological environment), geological relationships and hydrogeological conditions. 相似文献
The assessment of geological hazard is a topic with significant interest for the Balkans. During the last decade of twentieth century, most of the countries in the region have embarked on the road of a hasty transitory period from totalitarian regimes to democracy. Development of free market economy has given rise to uncontrolled movement of people, fast construction of housing and facilities and unproportioned accumulation of population around and in big cities. Besides Greece, an old member of European Union, and two newcomers in the organization, Romania and Bulgaria, the other countries are all hoping to enter the Union as faster as they can. Many different candidate or full-fledged member country programs of European Community offer a lot of joint and cross-border projects for constructing road infrastructure and facilities. As development accelerates in the Balkans and given the intensive geohazard elements that this territory exhibits, it becomes increasingly important to understand, study, and map these elements for being aware of the damage to the total environment these hazards might cause. The geohazard map and assessment of some Balkan countries has been carried out through two scientific meetings in Ohrid, Macedonia, and Tirana, Albania during 2007. The map is compiled in the Albanian Geological Survey, Tirana, Albania in the scale 1:1,000,000. As a base map, we used the topographic map produced by VGI, formerly Yugoslavia mapping authorities. As a seismic layer in our map, we used the values of peak ground acceleration obtained from Global Seismic Hazard Assessment Program. Two catalogs were constructed: The first one that contains the crustal earthquakes (hypocentral depth within first 70?km) and the second one that contains intermediate earthquakes (hypocentral depth below 70?km). This work is largely based on previous studies and investigations by earth scientists and specialists of each country comprised in this territory. In this respect, the map we constructed should be considered as a preliminary composite geohazard map with the possibility to be enriched and added with other new elements and data in the future. 相似文献
The southern coast of Lake Michigan is the most urbanized and most densely populated area in the Great Lakes region. Development of steel mills, harbors, and municipalities in NW Indiana and in NE Illinois in the last century and a half altered the nearshore environment so much that native beach gravel (>8 mm) now exist only in the exhumed paleo-beach remnants from the Nipissing Phase (~4,500 years ago) of Lake Michigan. Native gravel, collected from paleo-beach remnants at Mount Baldy Dune and Beach House Blowout, contain predominantly beach shingle, very platy siltstones (71–78 %), with secondary crystalline pebbles (18 %) in the east, and carbonate pebbles (12 %) in the west. A large amount of anthropogenic fill (steel industry waste, waste from power generating plants, construction debris, railroad, and road fill) has been added since the late 1800s to fill Lake Michigan and expand industrial land. Four areas of major coastal structures—Michigan City Pier and Breakwater, Burns Harbor Pier and Breakwater, Gary Works Pier, and Indiana Harbor Peninsula—altered the natural littoral drift and created four independent sectors on Indiana’s coast—Northeastern, Eastern, Central, and Western—between which no natural transfers of coarse sediments occur. Downdrift from the coastal structures, severe beach erosion has prompted extensive beach nourishment with non-native sandy gravel. Four distinct populations of modern beach gravel now exist along Indiana’s coast of Lake Michigan: (1) native gravel with diluted beach nourishment influence, (2) native gravel with a minor industrial influence, (3) compact gravel of nourished origin, and (4) anthropogenic gravel of industrial origin. Native gravel with diluted nourishment influence is found in the western, downdrift areas of the Northeastern (from Long Beach to Washington Park Beach) and Eastern Sectors (from eastern Indiana Dunes State Park to western Dune Acres) and contains up to 40 % compact carbonate and crystalline pebbles in addition to native beach shingle. Native gravel with minor industrial influence is found in the Central Sector of Indiana’s coast (from central Ogden Dunes to Marquette Beach) and contains predominantly beach shingle, platy clastic lithology, but also up to 30 % of chert and other pebbles released by industry. Compact gravel of nourished origin contains 60–90 % of carbonate and crystalline pebbles, and is found in the eastern, updrift areas of the Northeastern (Michiana Beach and Duneland Beach) and Eastern Sectors (from Crescent Beach to the western Beverly Shores). Anthropogenic gravel of industrial origin contains 70–90 % compact chert and slag and is found in every beach of the Western Sector and in the westernmost beach of the Central Sector. Streams draining into southern Lake Michigan generally contain little coarse sediment except in their channels near the roads and railroads, where angular to subangular anthropogenic pebbles predominate (70–90 %). However, streams have very little influence on gravel lithology along the coast because they seldom discharge anthropogenic gravel into Lake Michigan. Recent changes in gravel lithology along the southern Lake Michigan coast may affect changes in nearshore benthic flora and fauna as well as algal and bacterial blooms during warm summer months. 相似文献
Cumulative stress energy in active seismic regions caused by tectonic forces creates various earthquake precursors. This energy transformation may result in enhanced transient thermal infrared (TIR) emission, which can be detected through satellites equipped with thermal sensors like MODIS (Terra/Aqua) and AVHRR (NOAA). Satellite time-series data, coupled with ground based observations, where available, can enable scientists to survey pre-earthquake signals in the areas of strong tectonic activity. This paper presents observations made using time series MODIS and NOAA-AVHRR satellite data for derived multi-parameters including land surface temperature (LST), outgoing long-wave radiation (OLR), and mean air temperature (AT) for the moderate, 5.9 magnitude earthquake, which took place on the 27th of October, 2004, inthe seismic region of Vrancea, in Romania. Anomalous thermal infrared signals, reflected by a rise of several degrees celsius (°C) in LSTs, and higher OLR values were seen several days before the earthquake. AT values in the epicentral area also increased almost two days prior to the earthquake and intensified three days after the main shock. Increases in LSTs and OLR disappeared three days after the main shock. The survey and joint analysis of geospatial and in-situ geophysical information on land surface temperatures and outgoing long-wave radiation provides new insights into the field of seismic hazard assessment in Vrancea, a significant area of tectonic activity in Romania and Europe. 相似文献
Two discriminant function models are constructed in order to distinguish major- and trace-element geochemical patterns characteristic for radiolarian cherts from the Zagorje–Mid-Transdanubian Zone ophiolite mélange of NW Croatia. The models are subsequently used to assign new samples from the adjacent magmatic–sedimentary complex extending from the Central Dinaridic Ophiolite Belt in NW Bosnia and thereby to test their applicability in similar cases when clear field relations are absent. In both models the first discriminant function explains the most part of the system variability. However, between the two, the trace-element model proves itself as a more helpful predictive tool presenting a straightforward example of correct classification of samples into three pre-defined groups (Triassic-basin, Triassic-slope and Jurassic radiolarian cherts). This result is extended further, with allocation of all samples from the test region into a single group (Jurassic) according to their trace-element geochemistry. 相似文献