Supergene jarosite-group minerals are widespread in weathering profiles overlying Pb-Zn sulfide ores at Xitieshan, northern Tibetan Plateau, China. They consist predominantly of K-deficient natrojarosite, with lesser amounts of K-rich natrojarosite and plumbojarosite. Electron microprobe (EMP) analyses, scanning electron microcopy (SEM) investigation, and X-ray mapping reveal that the jarosite-group minerals are characterized by spectacular oscillatory zoning composed of alternating growth bands of K-deficient and K-bearing natrojarosite (K2O >1 wt.%). Plumbojarosite, whenever present, occurs as an overgrowth in the outermost bands, and its composition can be best represented by K0.29Na0.19Pb0.31Fe2.66Al0.22(SO4)1.65(PO4)0.31(AsO4)0.04(OH)7.37. The substitution of monovalent for divalent cations at the A site of plumbojarosite is charge balanced by the substitution of five-valent for six-valent anions in XO4 at the X site. Thermogravimetric analysis (TGA) of representative samples reveal mass losses of 11.46 wt.% at 446.6 °C and 21.42 wt.% at 683.4 °C due to dehydroxylation and desulfidation, respectively. TGA data also indicate that the natrojarosite structure collapses at 446.6 °C, resulting in the formation of NaFe(SO4)2 and minor hematite. The decomposition products of NaFe(SO4)2 are hematite and Na2SO4. Powder X-ray diffraction (XRD) analyses show that the jarosite-group minerals have mean unit-cell parameters of a?=?7.315 Å and c?=?016.598 Å. XRD and EMP data support the view that substitutions of Na for K in the A site and full Fe occupancy in the B site can considerably decrease the unit-cell parameter c, but only slightly increase a. The results from this study suggest that the observed oscillatory zoning of jarosite-group minerals at Xitieshan resulted mainly from substitutions of K for Na at the A site and P for S at the X site. 相似文献
Strata behaviors are mainly affected by regional geodynamic background. The influence of rock mass stress and energy distribution on strata behaviors in the Tongxin mine is studied in terms of regional tectonic movement, seismic activity and tectonic stress field. The results show that the extrusion lifting movement of Kouquan fault adjacent to the Tongxin mine results in the stress concentration in the rock of the Carboniferous coal bed and accumulation of a large amount of elastic energy and forms structural background of Tongxin mine. Due to various seismic activities in the mine area, the strain energy is known to reach much higher levels, up to 0.5×108J1/2. Since the stratigraphic structure is sensitive to the mining operation, the strain energy could cause strong strata behaviors. A special geological structure model of the Tongxin mine is established based on the geodynamic division method. The distribution of regional structure stress field is determined by the rock mass stress analysis system. Based on this model, Tongxin mine is divided into five areas with high stress, eight areas with low stress and eight areas with gradient stress. The strong strata behaviors mostly occur in high stress areas. These results could provide guidance to predict the strength of regional or mine pressure and control strata behavior in different areas. 相似文献