Deposits of open‐framework gravel occurring in gravelly streambeds can exert a significant influence on hyporheic flow. The influence was quantified using a numerical model of the hyporheic zone. The model included open‐framework gravel stratasets represented with commonly observed characteristics including a volume fraction of about one‐third of the streambed sediment, a hydraulic conductivity two orders of magnitude greater than other strata present, and a spatial connectivity forming preferential‐flow pathways. The influence of open‐framework gravel stratasets on hyporheic flow was much greater than the influence of the channel morphology including meanders, point bars, dunes, and ripples. Seventy percent of the total hyporheic exchange occurred across 30% of the channel boundary at locations of open‐framework gravel stratasets. The maximum local interfacial flux rates occurred at these locations, and were orders of magnitude greater than those at other locations. The local flux rates varied by six orders of magnitude over the channel boundary. The composite flow rate through the model with open‐framework gravel stratsets was an order of magnitude greater than that through an equivalent but homogeneous model. 相似文献
According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression, accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness (C1/C1–4) at the middle and northern parts of the depression and low one towards east and west sides and southern part. The carbon isotopes of methane and its homologues are relatively enriched in 13C, and the distributive range of δ13C1, δ13C2 and δ13C3 is ?32‰–?36‰, ?22‰–?24‰ and ?20‰–?22‰, respectively. In general, the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers. The δ13\(C_{CO_2 } \) value is less than ?10‰ in the Kuqa depression, indicating its organogenic origin. The distributive range of 3He/4He ratio is within n × 10?8 and a decrease in 3He/4He ratio from north to south in the depression is observed. Based on the geochemical parameters of natural gas above, natural gas in the Kuqa depression is of characteristics of coal-type gas origin. The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type, multistages accumulation of natural gas under high-temperature and over-pressure conditions, and sufficiency and diffusion of natural gas. 相似文献
To improve our knowledge about the geochemical and environmental aftermath of Neoproterozoic global glaciations, we analyzed stable isotopes (δ13C, δ18O, δ34S) and elemental concentrations (Ca, Mg, S, Sr, Fe, and Mn) of the ~ 10-m-thick Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Available chemostratigraphic data suggest that the Tereeken diamictite is probably equivalent to the Marinoan glaciation. Our new data indicate that organic and carbonate carbon isotopes of the Zhamoketi cap dolostone show little stratigraphic variations, averaging ? 28.2‰ and ? 4.6‰, respectively. In contrast, sulfur isotopes show significant stratigraphic variations. Carbonate associated sulfate (CAS) abundance decreases rapidly in the basal cap dolostone and δ34SCAS composition varies between + 9‰ and + 15‰ in the lower 2.5 m. In the overlying interval, CAS abundance remains low while δ34SCAS rises ~ 5‰ and varies more widely between + 10‰ and + 21‰. The range of δ34Spy of the cap dolostone overlaps with that of δ34SCAS, but direct comparison shows that δ34Spy is typically greater than δ34SCAS measured from the same samples. Hypotheses to explain the observations must account for both the remarkable sulfur isotope enrichment of pyrites and the inverse fractionation. We propose that CAS and pyrite were derived from two isotopically distinct reservoirs in a chemically stratified basin or a basin with a sulfate minimum zone. In this model, CAS was derived from shallow, oxic surface waters with moderate sulfate concentration and depleted in 34S due to the post-glacial influx of sulfur from continental weathering. In contrast, pyrite was derived from anoxic bottom waters (or a sulfate minimum zone) with low sulfate concentration and 34S enrichment due to long-term syn-glacial sulfate reduction. The rapid shift in CAS abundance and sulfur isotope composition within the cap dolostone is interpreted to reflect the mixing of the two reservoirs after initial deglaciation. Comparison with other post-Marinoan cap carbonates shows significant spatial heterogeneity in δ34SCAS, which together with strong temporal variation in δ34SCAS, points to generally low sulfate concentrations in post-Marinoan oceans. 相似文献
The Cretaceous in southern China is mainly a set of red and mauve clastic rock, with evaporation layers. For lack of source rock, it has been paid little attention to in the exploration process. With the development of research on hydrocarbon exploration, the masses of Cretaceous reservoirs and shows have been found in recent years. This means that the Cretaceous has great exploration potential. According to the research, authors find that the high-quality reservoir and efficient cap rocks develop in the Cretaceous. At the same time, the Cretaceous and underlying Paleozoic-Early Mesozoic marine strata and overlying Cenozoic nonmarine strata constitute a superimposed basin. Moreover, high-quality source rocks developed in the above-mentioned two sets of strata. In the south, especially in the middle and lower Yangtze region since the Himalayan strong rift was associated with a large number of faults, These faults connect the Cretaceous reservoir and its overlying and underlying source rocks, forming the fault-based and unconformity-based discontinuous source-reservoir-cap accumulation assemblages. Because the Cretaceous has the abundant oil and gas from Paleogene source rocks or Mesozoic-Paleozoic source rocks with secondary hydrocarbon generation ability, three types of reservoirs develop in the Cretaceous: “new-generating and old-reservoiring” reservoirs, “old-generating andnew-reservoiring” reservoirs, and few “self-generating andself-reservoiring” reservoirs. The hydrocarbon enrichment depends on two key factors. Firstly, Cretaceous reservoirs are near to the source kitchens, so its oil and gas source is ample. Secondly, the fault system is well developed, which provides the necessary conducting systems for hydrocarbon accumulation.
Based on reanalysis data, we find that the Indian Ocean Dipole (IOD) plays an important role in the variability of wave climate in the equatorial Northern Indian Ocean (NIO). Significant wave height (SWH) in the equatorial NIO, especially over the waters southeast to Sri Lanka, exhibits strong interannual variations. SWH anomalies in the waters southeast to Sri Lanka correlate well with dipole mode index (DMI) during both summer and autumn. Negative SWH anomalies occur over the oceanic area southeast to Sri Lanka during positive IOD events and vary with different types of IOD. During positive prolonged (unseasonable) IOD, the SWH anomalies are the strongest in autumn (summer); while during positive normal IOD, the SWH anomalies are weak in both summer and autumn. Strong easterly wind anomalies over the southeast oceanic area of Sri Lanka during positive IOD events weaken the original equatorial westerly wind stress, which leads to the decrease in wind-sea waves. The longer wave period during positive IOD events further confirms less wind-sea waves. The SWH anomaly pattern during negative IOD events is nearly opposite to that during positive IOD events. 相似文献
Actual pumping tests may involve continuously decreasing rates over a certain period of time, and the hydraulic conductivity (K) and specific storage (Ss) of the tested confined aquifer cannot be interpreted from the classical constant‐rate test model. In this study, we revisit the aquifer drawdown characteristics of a pumping test with an exponentially decreasing rate using the dimensionless analytical solution for such a variable‐rate model. The drawdown may decrease with time for a short period of time at intermediate pumping times for such pumping tests. A larger ratio of initial to final pumping rate and a smaller radial distance of the observation well will enhance the decreasing feature. A larger decay constant results in an earlier decrease, but it weakens the extent of such a decrease. Based on the proposed dimensionless transformation, we have proposed two graphical methods for estimating K and Ss of the tested aquifer. The first is a new type curve method that does not employ the well function as commonly done in standard type curve analysis. Another is a new analytic method that takes advantage of the decreasing features of aquifer drawdown during the intermediate pumping stage. We have demonstrated the applicability and robustness of the two new graphical methods for aquifer characterization through a synthetic pumping test. 相似文献